Do you want to publish a course? Click here

Origin of magnetic fields in cataclysmic variables

112   0   0.0 ( 0 )
 Added by Lilia Ferrario
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

In a series of recent papers, it has been proposed that high field magnetic white dwarfs are the result of close binary interaction and merging. Population synthesis calculations have shown that the origin of isolated highly magnetic white dwarfs is consistent with the stellar merging hypothesis. In this picture, the observed fields are caused by an alpha-Omega dynamo driven by differential rotation. The strongest fields arise when the differential rotation equals the critical break-up velocity and result from the merging of two stars (one of which has a degenerate core) during common envelope evolution or from the merging of two white dwarfs. We now synthesise a population of binary systems to investigate the hypothesis that the magnetic fields in the magnetic cataclysmic variables also originate during stellar interaction in the common envelope phase. Those systems that emerge from common envelope more tightly bound form the cataclysmic variables with the strongest magnetic fields. We vary the common envelope efficiency parameter and compare the results of our population syntheses with observations of magnetic cataclysmic variables. We find that common envelope interaction can explain the observed characteristics of these magnetic systems if the envelope ejection efficiency is low.



rate research

Read More

The origin of magnetic fields in isolated and binary white dwarfs has been investigated in a series of recent papers. One proposal is that magnetic fields are generated through an alpha-omega dynamo during common envelope evolution. Here we present population synthesis calculations showing that this hypothesis is supported by observations of magnetic binaries.
The NSFs Karl G. Jansky Very Large Array (VLA) is used to observe 122 magnetic cataclysmic variables (MCVs) during three observing semesters (13B, 15A, and 18A). We report radio detections of 33 stars with fluxes in the range 6--8031 uJy. Twenty-eight stars are new radio sources, increasing the number of radio detected MCVs to more that 40. A surprising result is that about three-quarters (24 of 33 stars) of the detections show highly circularly polarized radio emission of short duration, which is characteristic of electron cyclotron maser emission. We argue that this emission originates from the lower corona of the donor star, and not from a region between the two stars. Maser emission enables a more direct estimate of the mean coronal magnetic field of the donor star, which we estimate to be 1--4 kG assuming a magnetic filling factor of 50%. A two-sample Kolmogorov-Smirnov test supports the conclusion that the distribution function of radio detected MCVs with orbital periods between 1.5-5 hours is similar to that of all MCVs. This result implies that rapidly-rotating (Pspin < 10 days), fully convective stars can sustain strong magnetic dynamos. These results support the model of Taam & Spruit (1989) that the change in angular momentum loss across the fully convective boundary at Porb = ~3 hours is due to a change in the magnetic field structure of the donor star from a low-order to high-order multipolar field.
We use the complete, X-ray flux-limited ROSAT Bright Survey (RBS) to measure the space density of magnetic cataclysmic variables (mCVs). The survey provides complete optical identification of all sources with count rate >0.2/s over half the sky ($|b|>30^circ$), and detected 6 intermediate polars (IPs) and 24 polars. If we assume that the 30 mCVs included in the RBS are representative of the intrinsic population, the space density of mCVs is $8^{+4}_{-2} times 10^{-7},{rmpc^{-3}}$. Considering polars and IPs separately, we find $rho_{polar}=5^{+3}_{-2} times 10^{-7},{rm pc^{-3}}$ and $rho_{IP}=3^{+2}_{-1} times 10^{-7},{rm pc^{-3}}$. Allowing for a 50% high-state duty cycle for polars (and assuming that these systems are below the RBS detection limit during their low states) doubles our estimate of $rho_{polar}$ and brings the total space density of mCVs to $1.3^{+0.6}_{-0.4} times 10^{-6},{rm pc^{-3}}$. We also place upper limits on the sizes of faint (but persistent) mCV populations that might have escaped detection in the RBS. Although the large uncertainties in the $rho$ estimates prevent us from drawing strong conclusions, we discuss the implications of our results for the evolutionary relationship between IPs and polars, the fraction of CVs with strongly magnetic white dwarfs (WDs), and for the contribution of mCVs to Galactic populations of hard X-ray sources at $L_X ga 10^{31} {rm erg/s}$. Our space density estimates are consistent with the very simple model where long-period IPs evolve into polars and account for the whole short-period polar population. We find that the fraction of WDs that are strongly magnetic is not significantly higher for CV primaries than for isolated WDs. Finally, the space density of IPs is sufficiently high to explain the bright, hard X-ray source population in the Galactic Centre.
The Palomar Transient Factory proves to be a prolific source of Magnetic Cataclysmic Variables, selected by their distinctive photometric variability, and followed up spectroscopically. Here, we present six new candidate systems, together with preliminary photometric periods and spectra.
170 - Christian Knigge 2011
Every massive globular cluster (GC) is expected to harbour a significant population of cataclysmic variables (CVs). In this review, I first explain why GC CVs matter astrophysically, how many and what types are theoretically predicted to exist and what observational tools we can use to discover, confirm and study them. I then take a look at how theoretical predictions and observed samples actually stack up to date. In the process, I also reconsider the evidence for two widely held ideas about CVs in GCs: (i) that there must be many fewer dwarf novae than expected; (ii) that the incidence of magnetic CVs is much higher in GCs than in the Galactic field.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا