No Arabic abstract
The Palomar Transient Factory proves to be a prolific source of Magnetic Cataclysmic Variables, selected by their distinctive photometric variability, and followed up spectroscopically. Here, we present six new candidate systems, together with preliminary photometric periods and spectra.
We report the discovery of two new halo velocity groups (Cancer groups A and B) traced by 8 distant RR Lyrae stars and observed by the Palomar Transient Factory (PTF) survey at R.A.~129 deg, Dec~20 deg (l~205 deg, b~32 deg). Located at 92 kpc from the Galactic center (86 kpc from the Sun), these are some of the most distant substructures in the Galactic halo known to date. Follow-up spectroscopic observations with the Palomar Observatory 5.1-m Hale telescope and W. M. Keck Observatory 10-m Keck I telescope indicate that the two groups are moving away from the Galaxy at v_{gsr} = 78.0+-5.6 km/s (Cancer group A) and v_{gsr} = 16.3+-7.1 km/s (Cancer group B). The groups have velocity dispersions of sigma_{v_{gsr}}=12.4+-5.0 km/s and sigma_{v_{gsr}}=14.9+-6.2 km/s, and are spatially extended (about several kpc) making it very unlikely that they are bound systems, and are more likely to be debris of tidally disrupted dwarf galaxies or globular clusters. Both groups are metal-poor (median metallicities of [Fe/H] = -1.6 dex and [Fe/H] =-2.1 dex), and have a somewhat uncertain (due to small sample size) metallicity dispersion of ~0.4 dex, suggesting dwarf galaxies as progenitors. Two additional RR Lyrae stars with velocities consistent with those of the Cancer groups have been observed ~25 deg east, suggesting possible extension of the groups in that direction.
Among hard X-ray galactic sources detected by INTEGRAL and Swift surveys, those discovered as accreting white dwarfs have surprisingly boosted in number, representing 20% of the galactic sample. The majority are identified as magnetic cataclysmic variabiles of the intermediate polar type suggesting this subclass as an important constituent of galactic population of X-ray sources. In this conference-proceeding, we review the X-ray emission properties as observed with our ongoing XMM-Newton programme of newly discovered INTEGRAL and/or Swift sources that enlarged almost by a factor of two, identifying cataclysmic variabiles commonalities and outliers.
We present results of the Sky2Night project: a systematic, unbiased search for fast optical transients with the Palomar Transient Factory. We have observed 407 deg$^2$ in $R$-band for 8 nights at a cadence of 2 hours. During the entire duration of the project, the 4.2m William Herschel Telescope on La Palma was dedicated to obtaining identification spectra for the detected transients. During the search, we found 12 supernovae, 10 outbursting cataclysmic variables, 9 flaring M-stars, 3 flaring active Galactic nuclei and no extragalactic fast optical transients. Using this systematic survey for transients, we have calculated robust observed rates for the detected types of transients, and upper limits of the rate of extragalactic fast optical transients of $mathcal{R}<37times 10^{-4}$deg$^{-2}$d$^{-1}$ and $mathcal{R}<9.3times 10^{-4}$deg$^{-2}$d$^{-1}$ for timescales of 4h and 1d and a limiting magnitude of $Rapprox19.7$. We use the results of this project to determine what kind of and how many astrophysical false positives we can expect when following up gravitational wave detections in search for kilonovae.
Type Ic supernovae represent the explosions of the most stripped massive stars, but their progenitors and explosion mechanisms remain unclear. Larger samples of observed supernovae can help characterize the population of these transients. We present an analysis of 44 spectroscopically normal Type Ic supernovae, with focus on the light curves. The photometric data were obtained over 7 years with the Palomar Transient Factory (PTF) and its continuation, the intermediate Palomar Transient Factory (iPTF). This is the first homogeneous and large sample of SNe Ic from an untargeted survey, and we aim to estimate explosion parameters for the sample. We present K-corrected Bgriz light curves of these SNe, obtained through photometry on template-subtracted images. We performed an analysis on the shape of the $r$-band light curves and confirmed the correlation between the rise parameter Delta m_{-10} and the decline parameter Delta m_{15}. Peak r-band absolute magnitudes have an average of -17.71 +- 0.85 mag. To derive the explosion epochs, we fit the r-band lightcurves to a template derived from a well-sampled light curve. We computed the bolometric light curves using r and g band data, g-r colors and bolometric corrections. Bolometric light curves and Fe II lambda 5169 velocities at peak were used to fit to the Arnett semianalytic model in order to estimate the ejecta mass M_{ej}, the explosion energy E_{K} and the mass of radioactive nickel (M(56) Ni) for each SN. Including 41 SNe, we find average values of <M_{ej}>=4.50 +-0.79 msun, <E_{K}>=1.79 +- 0.29 x10^{51} erg, and <M(56)Ni)>= 0.19 +- 0.03 msun. The explosion-parameter distributions are comparable to those available in the literature, but our large sample also includes some transients with narrow and very broad light curves leading to more extreme ejecta masses values.
X-ray catalogues provide a wealth of information on many source types, ranging from compact objects to galaxies, clusters of galaxies, stars, and even planets. Thanks to the huge volume of X-ray sources provided in the 3XMM catalogue, along with many source specific products, many new examples from rare classes of sources can be identified. Through visualising spectra and lightcurves from about 80 observations included in the incremental part of the 3XMM catalogue, 3XMM-DR5, as part of the quality control of the catalogue, we identified two new X-ray sources, 3XMM J183333.1+225136 and 3XMM J184916.1+652943, that were highly variable. This work aims to investigate their nature. Through simple model fitting of the X-ray spectra and analysis of the X-ray lightcurves of 3XMM J183333.1+225136 and 3XMM J184916.1+652943, along with complementary photometry from the XMM-Newton Optical Monitor, Pan-Starrs and the Stella/WiFSIP and Large Binocular Telescope (LBT) spectra, we suggest that the two sources might be magnetic cataclysmic variables (CVs) of the polar type and we determine some of their properties. Both CVs have very hard spectra, showing no soft excess. They are both situated in the local neighbourhood, located within $sim$1 kpc. 3XMM J183333.1+225136 has an orbital period of 2.15 hours. It shows features in the lightcurve that may be a total eclipse of the white dwarf. 3XMM J184916.1+652943 has an orbital period of 1.6 hours. Given that only a small sky area was searched to identify these CVs, future sensitive all sky surveys such as the eROSITA project should be very successful at uncovering large numbers of such sources.