No Arabic abstract
Transporting quantum information is an important prerequisite for quantum computers. We study how this can be done in Heisenberg-coupled spin networks using adiabatic control over the coupling strengths. We find that qudits can be transferred and entangled pairs can be created between distant sites of bipartite graphs with a certain balance between the maximum spin of both parts, extending previous results that were limited to linear chains. The transfer fidelity in a small star-shaped network is numerically analysed, and possible experimental implementations are discussed.
Adiabatic methods are potentially important for quantum information protocols because of their robustness against many sources of technical and fundamental noise. They are particularly useful for quantum transport, and in some cases elementary quantum gates. Here we explore the extension of a particular protocol, dark state adiabatic passage, where a spin state is transported across a branched network of initialised spins, comprising one `input spin, and multiple leaf spins. We find that maximal entanglement is generated in systems of spin-half particles, or where the system is limited to one excitation.
We investigate the ground state properties of anti-ferromagnetic spin-1 Bose gases in one dimensional harmonic potential from the weak repulsion regime to the strong repulsion regime. By diagonalizing the Hamiltonian in the Hilbert space composed of the lowest eigenstates of single particle and spin components, the ground state wavefunction and therefore the density distributions, magnetization distribution, one body density matrix, and momentum distribution for each components are obtained. It is shown that the spinor Bose gases of different magnetization exhibit the same total density profiles in the full interaction regime, which evolve from the single peak structure embodying the properties of Bose gases to the fermionized shell structure of spin-polarized fermions. But each components display different density profiles, and magnetic domains emerge in the strong interaction limit for $M=0.25$. In the strong interaction limit, one body density matrix and the momentum distributions exhibit the same behaviours as those of spin-polarized fermions. The fermionization of momentum distribution takes place, in contrast to the $delta$-function-like distribution of single component Bose gases in the full interaction region.
Adiabatic transport of information is a widely invoked resource in connection with quantum information processing and distribution. The study of adiabatic transport via spin-half chains or clusters is standard in the literature, while in practice the true realisation of a completely isolated two-level quantum system is not achievable. We explore here, theoretically, the extension of spin-half chain models to higher spins. Considering arrangements of three spin-one particles, we show that adiabatic transport, specifically a generalisation of the Dark State Adiabatic Passage procedure, is applicable to spin-one systems. We thus demonstrate a qutrit state transfer protocol. We discuss possible ways to physically implement this protocol, considering quantum dot and nitrogen-vacancy implementations.
Famous for its spin-state puzzle, LaSrCoO$_4$ (Co$^{3+}$) is an intermediate between antiferromagnetic (AFM) La$_2$CoO$_4$ (Co$^{2+}$) and ferromagnetic (FM) Sr$_2$CoO$_4$ (Co$^{4+}$). The appearance of the Co$^{3+}$ valence state (not present in the end compounds) is intriguing because of the spin-state transitions associated with it. In this work, we report two magnetic transitions in LaSrCoO$_4$: (i) a transition at T $=$ T$_c$ $simeq$ 225 K, from the paramagnetic state to a state with an inhomogeneous long-range ferromagnetic (FM) order wherein finite FM clusters coexist with infinite FM matrix in the percolation sense, and (ii) the transition to the cluster spin glass (CSG) state at T $=$ T$_g$ $simeq$ 8 K. Finite FM clusters (which at low temperatures give rise to the cluster spin glass state) and infinite FM matrix are formed due to the spin-spin interactions brought about by the inhomogeneously distributed Co$^{3+}$ high spin (HS) and Co$^{3+}$ low spin (LS) ions. A firm support to the presence of an unconventional (inhomogeneous) ferromagnetic order comes from the anomalous values of the critical exponents $beta$, $gamma$ and $delta$ for the spontaneous magnetization, `zero-field magnetic susceptibility and the critical M - H isotherm, while the coexistence of HS Co$^{3+}$ and LS Co$^{3+}$ ions is confirmed by the results of the extended X-ray absorption fine structure spectroscopy.
In order to determine the superconducting paring state in the ferromagnetic superconductor UCoGe, ^{59}Co NMR Knight shift, which is directly related to the microscopic spin susceptibility, was measured in the superconducting state under magnetic fields perpendicular to spontaneous magnetization axis: ^{59}K^{a, b}. ^{59}K^{a, b} shows to be constant, but does not decrease below a superconducting transition. These behaviors as well as the invariance of the internal field at the Co site in the superconducting state exclude the spin-singlet pairing, and can be interpreted with the equal-spin pairing state with a large exchange field along the c axis, which was studied by Mineev [Phys. Rev. B 81, 180504 (2010)].