Do you want to publish a course? Click here

Spin Susceptibility in the Superconducting state of Ferromagnetic Superconductor UCoGe

130   0   0.0 ( 0 )
 Added by Taisuke Hattori
 Publication date 2013
  fields Physics
and research's language is English




Ask ChatGPT about the research

In order to determine the superconducting paring state in the ferromagnetic superconductor UCoGe, ^{59}Co NMR Knight shift, which is directly related to the microscopic spin susceptibility, was measured in the superconducting state under magnetic fields perpendicular to spontaneous magnetization axis: ^{59}K^{a, b}. ^{59}K^{a, b} shows to be constant, but does not decrease below a superconducting transition. These behaviors as well as the invariance of the internal field at the Co site in the superconducting state exclude the spin-singlet pairing, and can be interpreted with the equal-spin pairing state with a large exchange field along the c axis, which was studied by Mineev [Phys. Rev. B 81, 180504 (2010)].

rate research

Read More

UCoGe exhibits superconductivity in the presence of ferromagnetism. When a field is applied along the b axis (perpendicular to the easy axis), ferromagnetism is weakened and superconductivity is enhanced. This enhancement has been attributed to an increase in coupling as observed in the enhanced effective mass produced by the critical fluctuations as the ferromagnetic transition is strongly suppressed. However it is also important to know if and how the Fermi surface changes near the critical point. Here we report measurements of the thermoelectricity of UCoGe which reveal a low carrier density metal. Under magnetic field applied along the b axis, a sharp peak is observed in the thermopower of UCoGe at H*=11.1T and low temperature which becomes broader at higher temperatures. At higher field, the thermopower changes sign which suggests a modification of the Fermi Surface. We analyze these results using a topological change in Fermi surface and show that this can explain both the thermopower and the enhanced superconductivity.
We performed thermal conductivity measurements on a single crystal of the ferromagnetic superconductorUCoGe under magnetic field. Two different temperature dependencies of the thermal conductivity are observed, for H//b linear at low magnetic field and quadratic for magnetic field larger than 1 Tesla. At the same field value, a plateau appears in the field dependency of the residual term of thermal conductivity. Such observations suggest a multigap superconductivity with a line of nodes in the superconducting gap.
125 - Y. Ihara , T. Hattori , K. Ishida 2010
We have carried out direction-dependent ^{59}Co NMR experiments on a single crystal sample of the ferromagnetic superconductor UCoGe in order to study the magnetic properties in the normal state. The Knight shift and nuclear spin-lattice relaxation rate measurements provide microscopic evidence that both static and dynamic susceptibilities are ferromagnetic with strong Ising anisotropy. We discuss that superconductivity induced by these magnetic fluctuations prefers spin-triplet pairing state.
Recent observations [A.~Pustogow et al. Nature 574, 72 (2019)] of a drop of the $^{17}$O nuclear magnetic resonance (NMR) Knight shift in the superconducting state of Sr$_2$RuO$_4$ challenged the popular picture of a chiral odd-parity paired state in this compound. Here we use polarized neutron scattering to show that there is a $34 pm 6$ % drop in the magnetic susceptibility at the ruthenium site below the superconducting transition temperature. Measurements are made at lower fields $H sim tfrac{1}{3} H_{c2}$ than a previous study allowing the suppression to be observed. Our results are consistent with the recent NMR observations and rule out the chiral odd-parity $mathbf{d}=hat{mathbf{z}}(k_xpm ik_y)$ state. The observed susceptibility is consistent with several recent proposals including even-parity $B_{1g}$ and odd-parity helical states.
Identification of pairing mechanisms leading to the unconventional superconductivity realized in copper-oxide, heavy-fermions, and organic compounds is one of the most challenging issues in condensed-matter physics. Clear evidence for an electron-phonon mechanism in conventional superconductors is seen by the isotope effect on the superconducting transition temperatures $T_{rm SC}$, since isotopic substitution varies the phonon frequency without affecting the electronic states. In unconventional superconductors, magnetic fluctuations have been proposed to mediate superconductivity, and considerable efforts have been made to unravel relationships between normal-state magnetic fluctuations and superconductivity. Here, we show that characteristic experimental results on the ferromagnetic (FM) superconductor UCoGe ($T_{rm Curie} sim 2.5 $ K and $T_{rm SC} sim 0.6$ K) can be understood consistently within a scenario of the spin-triplet superconductivity induced by FM spin fluctuations. Temperature and angle dependencies of the upper critical magnetic field of the superconductivity ($H_{c2}$) are calculated on the basis of the above scenario by solving the Eliashberg equation. Calculated $H_{c2}$ well agrees with the characteristic experimental results observed in UCoGe. This is a first example that FM fluctuations are shown to be a pairing glue of superconductivity.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا