Do you want to publish a course? Click here

Nanosecond-scale magneto-exciton energy oscillations in quantum wells

210   0   0.0 ( 0 )
 Added by Artur Trifonov
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

We report on the experimental evidence for a nanosecond time-scale spin memory based on nonradiative excitons. The effect manifests itself in magnetic-field-induced oscillations of the energy of the optically active (radiative) excitons. The oscillations detected by a spectrally-resolved pump-probe technique applied to a GaAs/AlGaAs quantum well structure in a transverse magnetic field persist over a time scale, which is orders of magnitude longer than the characteristic decoherence time in the system. The effect is attributed to the spin-dependent electron-electron exchange interaction of the optically active and inactive excitons. The spin relaxation time of the electrons belonging to nonradiative excitons appears to be much longer than the hole spin relaxation time.



rate research

Read More

In this paper, we experimentally demonstrate an oscillating energy shift of quantum-confined exciton levels in a semiconductor quantum well after excitation into a superposition of two quantum confined exciton states of different parity. Oscillations are observed at frequencies corresponding to the quantum beats between these states. We show that the observed effect is a manifestation of the exciton density oscillations in the real space similar to the dynamics of a Hertzian dipole. The effect is caused by the exciton-exciton exchange interaction and appears only if the excitons are in a superposition quantum state. Thus, we have found clear evidence for the incoherent exchange interaction in the coherent process of quantum beats. This effect may be harnessed for quantum technologies requiring the quantum coherence of states.
The magnetotransport of highly mobile 2D electrons in wide GaAs single quantum wells with three populated subbands placed in titled magnetic fields is studied. The bottoms of the lower two subbands have nearly the same energy while the bottom of the third subband has a much higher energy ($E_1approx E_2<<E_3$). At zero in-plane magnetic fields magneto-intersubband oscillations (MISO) between the $i^{th}$ and $j^{th}$ subbands are observed and obey the relation $Delta_{ij}=E_j-E_i=kcdothbaromega_c$, where $omega_c$ is the cyclotron frequency and $k$ is an integer. An application of in-plane magnetic field produces dramatic changes in MISO and the corresponding electron spectrum. Three regimes are identified. At $hbaromega_c ll Delta_{12}$ the in-plane magnetic field increases considerably the gap $Delta_{12}$, which is consistent with the semi-classical regime of electron propagation. In contrast at strong magnetic fields $hbaromega_c gg Delta_{12}$ relatively weak oscillating variations of the electron spectrum with the in-plane magnetic field are observed. At $hbaromega_c approx Delta_{12}$ the electron spectrum undergoes a transition between these two regimes through magnetic breakdown. In this transition regime MISO with odd quantum number $k$ terminate, while MISO corresponding to even $k$ evolve $continuously$ into the high field regime corresponding to $hbaromega_c gg Delta_{12}$
175 - C. S. liu , H. G. Luo , W. C. Wu 2011
Motivated by a recent experiment of spatial and temperature dependent average exciton energy distribution in coupled quantum wells [S. Yang textit{et al.}, Phys. Rev. B textbf{75}, 033311 (2007)], we investigate the nature of the interactions in indirect excitons. Based on the uncertainty principle, along with a temperature and energy dependent distribution which includes both population and recombination effects, we show that the interplay between an attractive two-body interaction and a repulsive three-body interaction can lead to a natural and good account for the nonmonotonic temperature dependence of the average exciton energy. Moreover, exciton energy maxima are shown to locate at the brightest regions, in agreement with the recent experiments. Our results provide an alternative way for understanding the underlying physics of the exciton dynamics in coupled quantum wells.
We show that free-carrier (Drude) absorption of both polarized and unpolarized terahertz radiation in quantum well (QW) structures causes an electric photocurrent in the presence of an in-plane magnetic field. Experimental and theoretical analysis evidences that the observed photocurrents are spin-dependent and related to the gyrotropy of the QWs. Microscopic models for the photogalvanic effects in QWs based on asymmetry of photoexcitation and relaxation processes are proposed. In most of the investigated structures the observed magneto-induced photocurrents are caused by spin-dependent relaxation of non-equilibrium carriers.
Wave functions of heavy-hole excitons in GaAs/Al$_{0.3}$Ga$_{0.7}$As square quantum wells (QWs) of various widths are calculated by the direct numerical solution of a three-dimensional Schrodinger equation using a finite-difference scheme. These wave functions are then used to determine the exciton-exciton, exciton-electron and exciton-hole fermion exchange constants in a wide range of QW widths (5-150 nm). Additionally, the spin-dependent matrix elements of elastic exciton-exciton, exciton-electron and exciton-hole scattering are calculated. From these matrix elements, the collisional broadening of the exciton resonance is obtained within the Born approximation as a function of the areal density of excitons, electrons and holes respectively for QW widths of 5, 15, 30 and 50 nm. The obtained numerical results are compared with other theoretical works.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا