No Arabic abstract
Wave functions of heavy-hole excitons in GaAs/Al$_{0.3}$Ga$_{0.7}$As square quantum wells (QWs) of various widths are calculated by the direct numerical solution of a three-dimensional Schrodinger equation using a finite-difference scheme. These wave functions are then used to determine the exciton-exciton, exciton-electron and exciton-hole fermion exchange constants in a wide range of QW widths (5-150 nm). Additionally, the spin-dependent matrix elements of elastic exciton-exciton, exciton-electron and exciton-hole scattering are calculated. From these matrix elements, the collisional broadening of the exciton resonance is obtained within the Born approximation as a function of the areal density of excitons, electrons and holes respectively for QW widths of 5, 15, 30 and 50 nm. The obtained numerical results are compared with other theoretical works.
We present a computer simulation of exciton-exciton scattering in a quantum well. Specifically, we use quantum Monte Carlo techniques to study the bound and continuum states of two excitons in a 10 nm wide GaAs/Al$_{0.3}$Ga$_{0.7}$As quantum well. From these bound and continuum states we extract the momentum-dependent phase shifts for s-wave scattering. A surprising finding of this work is that a commonly studied effective-mass mode for excitons in a 10 nm quantum well actually supports two bound biexciton states. The second, weakly bound state may dramatically enhance exciton-exciton interactions. We also fit our results to a hard-disk model and indicate directions for future work.
We study theoretically the Coulomb interaction between excitons in transition metal dichalcogenide (TMD) monolayers. We calculate direct and exchange interaction for both ground and excited states of excitons. The screening of the Coulomb interaction, specific to monolayer structures, leads to the unique behavior of the exciton-exciton scattering for excited states, characterized by the non-monotonic dependence of the interaction as function of the transferred momentum. We find that the nontrivial screening enables the description of TMD exciton interaction strength by approximate formula which includes exciton binding parameters. The influence of screening and dielectric environment on the exciton-exciton interaction was studied, showing qualitatively different behavior for ground state and excited states of excitons. Furthermore, we consider exciton-electron interaction, which for the excited states is governed by the dominant attractive contribution of the exchange component, which increases with the excitation number. The results provide a quantitative description of the exciton-exciton and exciton-electron scattering in transition metal dichalcogenides, and are of interest for the design of perspective nonlinear optical devices based on TMD monolayers.
We study the evolution of the absorption spectrum of a modulation doped GaAs/AlGaAs semiconductor quantum well with decreasing the carrier density. We find that there is a critical density which marks the transition from a Fermi edge singularity to a hydrogen-like behavior. At this density both the lineshape and the transitions energies of the excitons change. We study the density dependence of the singularity exponent $alpha $ and show that disorder plays an important role in determining the energy scale over which it grows.
We present a fully three-dimensional study of the multiexciton optical response of vertically coupled GaN-based quantum dots via a direct-diagonalization approach. The proposed analysis is crucial in understanding the fundamental properties of few-particle/exciton interactions and, more important, may play an essential role in the design/optimization of semiconductor-based quantum information processing schemes. In particular, we focus on the interdot exciton-exciton coupling, key ingredient in recently proposed all-optical quantum processors. Our analysis demonstrates that there is a large window of realistic parameters for which both biexcitonic shift and oscillator strength are compatible with such implementation schemes.
We investigate the excitonic dynamics in MoSe2 monolayer and bulk samples by femtosecond transient absorption microscopy. Excitons are resonantly injected by a 750-nm and 100-fs laser pulse, and are detected by a probe pulse tuned in the range of 790 - 820 nm. We observe a strong density-dependent initial decay of the exciton population in monolayers, which can be well described by the exciton-exciton annihilation. Such a feature is not observed in the bulk under comparable conditions. We also observe the saturated absorption induced by exciton phase-space filling in both monolayers and the bulk, which indicates their potential applications as saturable absorbers.