Do you want to publish a course? Click here

Model Predictive Controller with Average Emissions Constraints for Diesel Airpath

60   0   0.0 ( 0 )
 Publication date 2018
and research's language is English




Ask ChatGPT about the research

Diesel airpath controllers are required to deliver good tracking performance whilst satisfying operational constraints and physical limitations of the actuators. Due to explicit constraint handling capabilities, model predictive controllers (MPC) have been successfully deployed in diesel airpath applications. Previous MPC implementations have considered instantaneous constraints on engine-out emissions in order to meet legislated emissions regulations. However, the emissions standards are specified over a drive cycle, and hence, can be satisfied on average rather than just instantaneously, potentially allowing the controller to exploit the trade-off between emissions and fuel economy. In this work, an MPC is formulated to maximise the fuel efficiency whilst tracking boost pressure and exhaust gas recirculation (EGR) rate references, and in the face of uncertainties, adhering to the input, safety constraints and constraints on emissions averaged over some finite time period. The tracking performance and satisfaction of average emissions constraints using the proposed controller are demonstrated through an experimental study considering the new European drive cycle.



rate research

Read More

A significant challenge in the development of control systems for diesel airpath applications is to tune the controller parameters to achieve satisfactory output performance, especially whilst adhering to input and safety constraints in the presence of unknown system disturbances. Model-based control techniques, such as model predictive control (MPC), have been successfully applied to multivariable and highly nonlinear systems, such as diesel engines, while considering operational constraints. However, efficient calibration of typical implementations of MPC is hindered by the high number of tuning parameters and their non-intuitive correlation with the output response. In this paper, the number of effective tuning parameters is reduced through suitable structural modifications to the controller formulation and an appropriate redesign of the MPC cost function to aid rapid calibration. Furthermore, a constraint tightening-like approach is augmented to the control architecture to provide robustness guarantees in the face of uncertainties. A switched linear time-varying MPC strategy with recursive feasibility guarantees during controller switching is proposed to handle transient operation of the engine. The robust controller is first implemented on a high fidelity simulation environment, with a comprehensive investigation of its calibration to achieve desired transient response under step changes in the fuelling rate. An experimental study then validates and highlights the performance of the proposed controller architecture for selected tunings of the calibration parameters for fuelling steps and over drive cycles.
249 - Zhenwu Shi , Fumin Zhang 2015
When multiple model predictive controllers are implemented on a shared control area network (CAN), their performance may degrade due to the inhomogeneous timing and delays among messages. The priority based real-time scheduling of messages on the CAN introduces complex timing of events, especially when the types and number of messages change at runtime. This paper introduces a novel hybrid timing model to make runtime predictions on the timing of the messages for a finite time window. Controllers can be designed using the optimization algorithms for model predictive control by considering the timing as optimization constraints. This timing model allows multiple controllers to share a CAN without significant degradation in the controller performance. The timing model also provides a convenient way to check the schedulability of messages on the CAN at runtime. Simulation results demonstrate that the timing model is accurate and computationally efficient to meet the needs of real-time implementation. Simulation results also demonstrate that model predictive controllers designed when considering the timing constraints have superior performance than the controllers designed without considering the timing constraints.
Robots with flexible spines based on tensegrity structures have potential advantages over traditional designs with rigid torsos. However, these robots can be difficult to control due to their high-dimensional nonlinear dynamics and actuator constraints. This work presents two controllers for tensegrity spine robots, using model-predictive control (MPC) and inverse statics optimization. The controllers introduce two different approaches to making the control problem computationally tractable. The first utilizes smoothing terms in the MPC problem. The second uses a new inverse statics optimization algorithm, which gives the first feasible solutions to the problem for certain tensegrity robots, to generate reference input trajectories in combination with MPC. Tracking the inverse statics reference input trajectory significantly reduces the number of tuning parameters. The controllers are validated against simulations of two-dimensional and three-dimensional tensegrity spines. Both approaches show noise insensitivity and low tracking error, and can be used for different control goals. The results here demonstrate the first closed-loop control of such structures.
A stochastic model predictive control (SMPC) approach is presented for discrete-time linear systems with arbitrary time-invariant probabilistic uncertainties and additive Gaussian process noise. Closed-loop stability of the SMPC approach is established by appropriate selection of the cost function. Polynomial chaos is used for uncertainty propagation through system dynamics. The performance of the SMPC approach is demonstrated using the Van de Vusse reactions.
120 - Matthew Tsao , Ramon Iglesias , 2018
This paper presents a stochastic, model predictive control (MPC) algorithm that leverages short-term probabilistic forecasts for dispatching and rebalancing Autonomous Mobility-on-Demand systems (AMoD, i.e. fleets of self-driving vehicles). We first present the core stochastic optimization problem in terms of a time-expanded network flow model. Then, to ameliorate its tractability, we present two key relaxations. First, we replace the original stochastic problem with a Sample Average Approximation (SAA), and characterize the performance guarantees. Second, we separate the controller into two separate parts to address the task of assigning vehicles to the outstanding customers separate from that of rebalancing. This enables the problem to be solved as two totally unimodular linear programs, and thus easily scalable to large problem sizes. Finally, we test the proposed algorithm in two scenarios based on real data and show that it outperforms prior state-of-the-art algorithms. In particular, in a simulation using customer data from DiDi Chuxing, the algorithm presented here exhibits a 62.3 percent reduction in customer waiting time compared to state of the art non-stochastic algorithms.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا