Do you want to publish a course? Click here

Model-Predictive Control with Inverse Statics Optimization for Tensegrity Spine Robots

227   0   0.0 ( 0 )
 Added by Andrew Sabelhaus
 Publication date 2018
and research's language is English




Ask ChatGPT about the research

Robots with flexible spines based on tensegrity structures have potential advantages over traditional designs with rigid torsos. However, these robots can be difficult to control due to their high-dimensional nonlinear dynamics and actuator constraints. This work presents two controllers for tensegrity spine robots, using model-predictive control (MPC) and inverse statics optimization. The controllers introduce two different approaches to making the control problem computationally tractable. The first utilizes smoothing terms in the MPC problem. The second uses a new inverse statics optimization algorithm, which gives the first feasible solutions to the problem for certain tensegrity robots, to generate reference input trajectories in combination with MPC. Tracking the inverse statics reference input trajectory significantly reduces the number of tuning parameters. The controllers are validated against simulations of two-dimensional and three-dimensional tensegrity spines. Both approaches show noise insensitivity and low tracking error, and can be used for different control goals. The results here demonstrate the first closed-loop control of such structures.



rate research

Read More

A stochastic model predictive control (SMPC) approach is presented for discrete-time linear systems with arbitrary time-invariant probabilistic uncertainties and additive Gaussian process noise. Closed-loop stability of the SMPC approach is established by appropriate selection of the cost function. Polynomial chaos is used for uncertainty propagation through system dynamics. The performance of the SMPC approach is demonstrated using the Van de Vusse reactions.
120 - Matthew Tsao , Ramon Iglesias , 2018
This paper presents a stochastic, model predictive control (MPC) algorithm that leverages short-term probabilistic forecasts for dispatching and rebalancing Autonomous Mobility-on-Demand systems (AMoD, i.e. fleets of self-driving vehicles). We first present the core stochastic optimization problem in terms of a time-expanded network flow model. Then, to ameliorate its tractability, we present two key relaxations. First, we replace the original stochastic problem with a Sample Average Approximation (SAA), and characterize the performance guarantees. Second, we separate the controller into two separate parts to address the task of assigning vehicles to the outstanding customers separate from that of rebalancing. This enables the problem to be solved as two totally unimodular linear programs, and thus easily scalable to large problem sizes. Finally, we test the proposed algorithm in two scenarios based on real data and show that it outperforms prior state-of-the-art algorithms. In particular, in a simulation using customer data from DiDi Chuxing, the algorithm presented here exhibits a 62.3 percent reduction in customer waiting time compared to state of the art non-stochastic algorithms.
We present an algorithm for controlling and scheduling multiple linear time-invariant processes on a shared bandwidth limited communication network using adaptive sampling intervals. The controller is centralized and computes at every sampling instant not only the new control command for a process, but also decides the time interval to wait until taking the next sample. The approach relies on model predictive control ideas, where the cost function penalizes the state and control effort as well as the time interval until the next sample is taken. The latter is introduced in order to generate an adaptive sampling scheme for the overall system such that the sampling time increases as the norm of the system state goes to zero. The paper presents a method for synthesizing such a predictive controller and gives explicit sufficient conditions for when it is stabilizing. Further explicit conditions are given which guarantee conflict free transmissions on the network. It is shown that the optimization problem may be solved off-line and that the controller can be implemented as a lookup table of state feedback gains. Simulation studies which compare the proposed algorithm to periodic sampling illustrate potential performance gains.
We present a sample-based Learning Model Predictive Controller (LMPC) for constrained uncertain linear systems subject to bounded additive disturbances. The proposed controller builds on earlier work on LMPC for deterministic systems. First, we introduce the design of the safe set and value function used to guarantee safety and performance improvement. Afterwards, we show how these quantities can be approximated using noisy historical data. The effectiveness of the proposed approach is demonstrated on a numerical example. We show that the proposed LMPC is able to safely explore the state space and to iteratively improve the worst-case closed-loop performance, while robustly satisfying state and input constraints.
Trajectory optimization of a controlled dynamical system is an essential part of autonomy, however many trajectory optimization techniques are limited by the fidelity of the underlying parametric model. In the field of robotics, a lack of model knowledge can be overcome with machine learning techniques, utilizing measurements to build a dynamical model from the data. This paper aims to take the middle ground between these two approaches by introducing a semi-parametric representation of the underlying system dynamics. Our goal is to leverage the considerable information contained in a traditional physics based model and combine it with a data-driven, non-parametric regression technique known as a Gaussian Process. Integrating this semi-parametric model with model predictive pseudospectral control, we demonstrate this technique on both a cart pole and quadrotor simulation with unmodeled damping and parametric error. In order to manage parametric uncertainty, we introduce an algorithm that utilizes Sparse Spectrum Gaussian Processes (SSGP) for online learning after each rollout. We implement this online learning technique on a cart pole and quadrator, then demonstrate the use of online learning and obstacle avoidance for the dubin vehicle dynamics.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا