Do you want to publish a course? Click here

Staged laser acceleration of high quality protons from a tailored plasma

63   0   0.0 ( 0 )
 Added by Igor Andriyash A
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

A new scheme of proton acceleration from a laser-driven near-critical-density plasma is proposed. Plasma with a tailored density profile allows a two-stage acceleration of protons. The protons are pre-accelerated in the laser-driven wakefields, and are then further accelerated by the collisionless shock, launched from the rear side of the plasma. The shock has a small transverse size, and it generates a strong space-charge field, which defocuses protons in such a way, that only those protons with the highest energies and low energy spread remains collimated. Theoretical and numerical analysis demonstrates production of high-energy proton beams with few tens of percents energy spread, few degrees divergence and charge of few nC. This scheme indicates the efficient generation of quasi-monoenergetic proton beams with energies up to several hundreds of MeV with PW-class ultrashort lasers.



rate research

Read More

CO2 laser-driven electron acceleration is demonstrated with particle-in-cell simulation in low-density plasma. An intense CO2 laser pulse with long wavelength excites wakefield. The bubble behind it has a broad space to sustain a large amount of electrons before reaching its charge saturation limit. A transversely propagating inject pulse is used to induce and control the ambient electron injection. The accelerated electron bunch with total charge up to 10 nC and the average charge per energy interval of more than 0.6 nC/MeV are obtained. Plasma-based electron acceleration driven by intense CO2 laser provides a new potential way to generate high-charge electron bunch with low energy spread, which has broad applications, especially for X-ray generation by table-top FEL and bremsstrahlung.
We propose a new approach to high-intensity laser-driven electron acceleration in a plasma. Here, we demonstrate that a plasma wave generated by a stimulated forward-scattering of an incident laser pulse can be in a longest acceleration phase with an incident laser wave. This is why the plasma wave has the maximum amplification coefficient which is determined by the breakdown (overturn) electric field in which the acceleration of injected relativistic beam electrons occurs. We estimate qualitatively the acceleration parameters of relativistic electrons in the field of a plasma wave generated at the stimulated forward scattering of a high-intensity laser pulse in a plasma.
We developed an experimental platform for studying magnetic reconnection in an external magnetic field with simultaneous measurements of plasma imaging, flow velocity, and magnetic-field variation. Here, we investigate the stagnation and acceleration in counter-streaming plasmas generated by high-power laser beams. A plasma flow perpendicular to the initial flow directions is measured with laser Thomson scattering. The flow is, interestingly, accelerated toward the high-density region, which is opposite to the direction of the acceleration by pressure gradients. This acceleration is possibly interpreted by the interaction of two magnetic field loops initially generated by Biermann battery effect, resulting in a magnetic reconnection forming a single field loop and additional acceleration by a magnetic tension force.
Laser wakefield accelerators rely on the extremely high electric fields of nonlinear plasma waves to trap and accelerate electrons to relativistic energies over short distances. When driven strongly enough, plasma waves break, trapping a large population of the background electrons that support their motion. This limits the maximum electric field. Here we introduce a novel regime of plasma wave excitation and wakefield acceleration that removes this limit, allowing for arbitrarily high electric fields. The regime, enabled by spatiotemporal shaping of laser pulses, exploits the property that nonlinear plasma waves with superluminal phase velocities cannot trap charged particles and are therefore immune to wave breaking. A laser wakefield accelerator operating in this regime provides energy tunability independent of the plasma density and can accommodate the large laser amplitudes delivered by modern and planned high-power, short pulse laser systems.
140 - Chong Lv , Bai-Song Xie , Feng Wan 2017
A scheme with gold cone-capillary is proposed to improve the protons acceleration and involved problems are investigated by using the two-dimensional particle-in-cell simulations. It is demonstrated that the cone-capillary can efficiently guide and collimate the protons to a longer distance and lead to a better beam quality with a dense density $geq10n_c$, monoenergetic peak energy $E_k sim 1.51~mathrm{GeV}$, spatial emittance $sim0.0088~mathrm{mm}~mathrm{mrad}$ with divergence angle $theta sim 1.0^{circ}$ and diameter $sim 0.5mathrm{mu m}$. The enhancement is mainly attributed to the focusing effect by the transverse electric field generated by the cone as well as the capillary, which can prevent greatly the protons from expanding in the transverse direction. Comparable to without the capillary, the protons energy spectra have a stable monoenergetic peak and divergence angle near to $1.0^{circ}$ in longer time. Besides, the efficiency of acceleration depending on the capillary length is explored, and the optimal capillary length is also achieved. Such a target may be benefit to many applications such as ions fast ignition in inertial fusion, proton therapy in medicine and so on.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا