Do you want to publish a course? Click here

Aerodynamic Loads Alteration by Gurney Flap on Supercritical Airfoils at Transonic Speeds

50   0   0.0 ( 0 )
 Added by Amir Saman Rezaei
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

Effects of a gurney flap were numerically investigated on the supercritical NASA airfoil by solving the two-dimensional Reynolds-averaged Navier-Stokes equations for a range of transonic Mach numbers and angles of attack, using turbulence compressible KW SST model. The height of the gurney flap was selected to be 1.65 percent chord length. A high-resolution mesh was applied to accurately predict the flow field specifically in the vicinity of the airfoil. Below the drag divergence Mach number, the gurney flap has a remarkable influence on the aerodynamic coefficients especially at -1 and 0 degrees angle of attack resulting in 50 percent increase in L over D ratio. At high Mach numbers and angles of attack, Gurney flap loses its effects and the clean airfoil has better aerodynamic performance since it significantly boosts both the pressure and shear drag. It was observed that the gurney flap mitigates the transonic lambda shock on both surfaces of the airfoil. Moreover, it alters the Kutta condition by changing the separation point location at the trailing edge which provides the airfoil more bound circulation and lift force.



rate research

Read More

A practical application of universal wall scalings is near-wall turbulence modeling. In this paper, we exploit temperatures semi-local scaling [Patel, Boersma, and Pecnik, {Scalar statistics in variable property turbulent channel flows}, Phys. Rev. Fluids, 2017, 2(8), 084604] and derive an eddy conductivity closure for wall-modeled large-eddy simulation of high-speed flows. We show that while the semi-local scaling does not collapse high-speed direct numerical simulation (DNS) data, the resulting eddy conductivity and the wall model work fairly well. The paper attempts to answer the following outstanding question: why the semi-local scaling fails but the resulting eddy conductivity works well. We conduct DNSs of Couette flows at Mach numbers from $M=1.4$ to 6. We add a source term in the energy equation to get a cold, a close-to-adiabatic wall, and a hot wall. Detailed analysis of the flows energy budgets shows that aerodynamic heating is the answer to our question: aerodynamic heating is not accounted for in Patel et al.s semi-local scaling but is modeled in the equilibrium wall model. We incorporate aerodynamic heating in semi-local scaling and show that the new scaling successfully collapses the high-speed DNS data. We also show that incorporating aerodynamic heating or not, the semi-local scaling gives rise to the exact same eddy conductivity, thereby answering the outstanding question.
Numerical analysis of a shear layer between a cool liquid n-decane hydrocarbon and a hot oxygen gas at supercritical pressures shows that a well-defined phase equilibrium can be established. Variable properties are considered with the product of density and viscosity in the gas phase showing a nearly constant result within the laminar flow region with no instabilities. Sufficiently thick diffusion layers form around the liquid-gas interface to support the case of continuum theory and phase equilibrium. While molecules are exchanged for both species at all pressures, net mass flux across the interface shifts as pressure is increased. Net vaporization occurs for low pressures while net condensation occurs at higher pressures. For a mixture of n-decane and oxygen, the transition occurs around 50 bar. The equilibrium values at the interface quickly reach their downstream asymptotes. For all cases, profiles of diffusing-advecting quantities collapse to a similar solution (i.e., function of one independent variable). Validity of the boundary layer approximation and similarity are shown in both phases for Reynolds numbers greater than 239 at 150 bar. Results for other pressures are also taken at high Reynolds numbers. Thereby, the validity of the boundary layer approximation and similarity are expected. However, at very high pressures, the similar one-dimensional profiles vary for different problem constraints.
Numerical heat and mass transfer analysis of a configuration where a cool liquid hydrocarbon is suddenly introduced to a hotter gas at supercritical pressure shows that a well-defined phase equilibrium can be established before substantial growth of typical hydrodynamic instabilities. The equilibrium values at the interface quickly reach near-steady values. Sufficiently thick diffusion layers form quickly around the liquid-gas interface (e.g., 3-10 microns for the liquid phase and 10-30 microns for the gas phase in 10-100 microseconds), where density variations become increasingly important with pressure as mixing of species is enhanced. While the hydrocarbon vaporizes and the gas condenses for all analyzed pressures, the net mass flux across the interface reverses as pressure is increased, showing that a clear vaporization-driven problem at low pressures may present condensation at higher pressures. This is achieved while heat still conducts from gas to liquid. Analysis of fundamental thermodynamic laws on a fixed-mass element containing the diffusion layers proves the thermodynamic viability of the obtained results.
Wettability is a pore-scale property that has an important impact on capillarity, residual trapping, and hysteresis in porous media systems. In many applications, the wettability of the rock surface is assumed to be constant in time and uniform in space. However, many fluids are capable of altering the wettability of rock surfaces permanently and dynamically in time. Experiments have shown wettability alteration can significantly decrease capillarity in CO$_2$ storage applications. For these systems, the standard capillary-pressure model that assumes static wettability is insufficient to describe the physics. In this paper, we develop a new dynamic capillary-pressure model that takes into account changes in wettability at the pore-level by adding a dynamic term to the standard capillary pressure function. We simulate the dynamic system using a bundle-of-tubes (BoT) approach, where a mechanistic model for time-dependent contact angle change is introduced at the pore scale. The resulting capillary pressure curves are then used to quantify the dynamic component of the capillary pressure function. This study shows the importance of time-dependent wettability for determining capillary pressure over timescales of months to years. The impact of wettability has implications for experimental methodology as well as macroscale simulation of wettability-altering fluids.
We extend the impulse theory for unsteady aerodynamics, from its classic global form to finite-domain formulation then to minimum-domain form, and from incompressible to compressible flows. For incompressible flow, the minimum-domain impulse theory raises the finding of Li and Lu (J. Fluid Mech., 712: 598-613, 2012) to a theorem: The entire force with discrete wake is completely determined by only the time rate of impulse of those vortical structures still connecting to the body, along with the Lamb-vector integral thereof that captures the contribution of all the rest disconnected vortical structures. For compressible flow, we find that the global form in terms of the curl of momentum, obtained by Huang (Unsteady Vortical Aerodynamics. Shanghai Jiaotong Univ. Press, 1994), can be generalized to having arbitrary finite domain, but the formula is cumbersome and in general the curl of momentum no longer has discrete structure and hence no minimum-domain theory exists. Nevertheless, as the measure of transverse process only, the unsteady field of vorticity may still have discrete wake. This leads to a minimum-domain compressible vorticity-moment theory in terms of density-weighted vorticity (but it is beyond the classic concept of impulse). These new findings and applications have been confirmed by our numerical experiments. The results not only open an avenue to combine the theory with computation-experiment in wide applications, but also reveals a physical truth that it is no longer necessary to account for all wake vortical structures in computing the force and moment.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا