Do you want to publish a course? Click here

Injection locking of multiple auto-oscillation modes in a tapered nanowire spin Hall oscillator

298   0   0.0 ( 0 )
 Added by Kai Wagner
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

Spin Hall oscillators (SHO) are promising candidates for the generation, detection and amplification of high frequency signals, that are tunable through a wide range of operating frequencies. They offer to be read out electrically, magnetically and optically in combination with a simple bilayer design. Here, we experimentally study the spatial dependence and spectral properties of auto-oscillations in SHO devices based on Pt(7 nm)/ Ni$_{mathrm{80}}$Fe$_{mathrm{20}}$(5 nm) tapered nanowires. Using Brillouin light scattering microscopy, we observe two individual self-localized spin-wave bullets that oscillate at two distinct frequencies (5.2 GHz and 5.45 GHz) and are localized at different positions separated by about 750 nm within the SHO. This state of a tapered SHO has been predicted by a Ginzburg-Landau auto-oscillator model, but not yet been directly confirmed experimentally. We demonstrate that the observed bullets can be individually synchronized to external microwave signals, leading to a frequency entrainment, linewidth reduction and increase in oscillation amplitude for the bullet that is selected by the microwave frequency. At the same time, the amplitude of other parasitic modes decreases, which promotes the single-mode operation of the SHO. Finally, the synchronization of the spin-wave bullets is studied as a function of the microwave power. We believe that our findings promote the realization of extended spin Hall oscillators accomodating several distinct spin-wave bullets, that jointly cover an extended range of tunability.

rate research

Read More

We study locking phenomena of two strongly coupled, high-quality factor nanomechanical resonator modes subject to a common parametric drive at a single drive frequency. By controlled dielectric gradient forces we tune the resonance frequencies of the flexural in-plane and out-of-plane oscillation of the high stress silicon nitride string through their mutual avoided crossing. For the case of the strong common parametric drive signal-idler generation via parametric oscillation is observed, analogously to the framework of nonlinear optical effects in an optical parametric oscillator. Frequency tuning of the signal and idler resonances is demonstrated. When the resonance frequencies of signal and idler get closer to each other, partial injection locking, injection pulling and complete injection locking to half of the drive frequency occurs depending on the pump strength. Furthermore, satellite resonances, symmetrically off-set from signal and idler by their beat-note, are observed which can be attributed to degenerate four-wave-mixing in the highly nonlinear mechanical oscillations.
We experimentally demonstrate that both quasi-linear and nonlinear self-localized bullet modes of magnetization auto-oscillation can be excited by dc current in the nano-gap spin Hall nano-oscillator, by utilizing the geometry with an extended gap. The quasi-linear mode is stable at low driving currents, while the bullet mode is additionally excited at larger currents, and becomes increasingly dominant with increasing current. Time-resolved measurements show that the formation of the bullet mode is delayed relative to the quasi-linear mode by up to 100 nanoseconds, demonstrating that the mechanisms of the formation of these modes are fundamentally different. We discuss the relationship between the observed behaviors and the formation of an unstable nonlinear magnon condensate.
Successful incorporation of the spin degree of freedom in semiconductor technology requires the development of a new paradigm allowing for a scalable, non-destructive electrical detection of the spin-polarization of injected charge carriers as they propagate along the semiconducting channel. In this paper we report the observation of a spin-injection Hall effect (SIHE) which exploits the quantum-relativistic nature of spin-charge transport and which meets all these key requirements on the spin detection. The two-dimensional electron-hole gas photo-voltaic cell we designed to observe the SIHE allows us to develop a quantitative microscopic theory of the phenomenon and to demonstrate its direct application in optoelectronics. We report an experimental realization of a non-magnetic spin-photovoltaic effect via the SIHE, rendering our device an electrical polarimeter which directly converts the degree of circular polarization of light to a voltage signal.
Spin torque from spin current applied to a nanoscale region of a ferromagnet can act as negative magnetic damping and thereby excite self-oscillations of its magnetization. In contrast, spin torque uniformly applied to the magnetization of an extended ferromagnetic film does not generate self-oscillatory magnetic dynamics but leads to reduction of the saturation magnetization. Here we report studies of the effect of spin torque on a system of intermediate dimensionality - a ferromagnetic nanowire. We observe coherent self-oscillations of magnetization in a ferromagnetic nanowire serving as the active region of a spin torque oscillator driven by spin orbit torques. Our work demonstrates that magnetization self-oscillations can be excited in a one-dimensional magnetic system and that dimensions of the active region of spin torque oscillators can be extended beyond the nanometer length scale.
The momentum and spin of charge carriers in the topological insulators are constrained to be perpendicular to each other due to the strong spin-orbit coupling. We have investigated this unique spin-momentum locking property in Sb2Te3 topological insulator nanowires by injecting spin-polarized electrons through magnetic tunnel junction electrodes. Non-local voltage measurements exhibit a symmetry with respect to the magnetic field applied perpendicular to the nanowire channel, which is remarkably different from that of a non-local measurement in a channel that lacks spin-momentum locking. In stark contrast to conventional non-local spin valves, simultaneous reversal of magnetic moments of all magnetic contacts to the Sb2Te3 nanowire alters the non-local voltage. This unusual symmetry is a clear signature of the spin-momentum locking in the Sb2Te3 nanowire surface states.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا