Do you want to publish a course? Click here

Enhanced optical Kerr nonlinearity of graphene/Si hybrid waveguide

92   0   0.0 ( 0 )
 Added by Qi Feng
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

In this work, we experimentally study the optical kerr nonlinearities of graphene/Si hybrid waveguides with enhanced self-phase modulation. In the case of CMOS compatible materials for nonlinear optical signal processing, Si and silicon nitride waveguides have been extensively investigated over the past decade. However, Si waveguides exhibit strong two-photon absorption (TPA) at telecommunication wavelengths, which lead to a significant reduction of nonlinear figure of merit. In contrast, silicon nitride based material system usually suppress the TPA, but simultaneously leads to the reduction of the Kerr nonlinearity by two orders of magnitude. Here, we introduce a graphene/Si hybrid waveguide, which remain the optical properties and CMOS compatibility of Si waveguides, while enhance the Kerr nonlinearity by transferring patterned graphene over the top of the waveguides. The graphene/Si waveguides are measured with a nonlinear parameter of 510 W-1m-1. Enhanced nonlinear figure-of-merit (FOM) of 2.48 has been achieved, which is three times higher than that of the Si waveguide. This work reveals the potential application of graphene/Si hybrid photonic waveguides with high Kerr nonlinearity and FOM for nonlinear all-optical signal processing.



rate research

Read More

We present a micrometer scale, on-chip integrated, plasmonic enhanced graphene photodetector (GPD) for telecom wavelengths operating at zero dark current. The GPD is designed and optimized to directly generate a photovoltage and has an external responsivity~12.2V/W with a 3dB bandwidth~42GHz. We utilize Au split-gates with a$sim$100nm gap to electrostatically create a p-n-junction and simultaneously guide a surface plasmon polariton gap-mode. This increases light-graphene interaction and optical absorption and results in an increased electronic temperature and steeper temperature gradient across the GPD channel. This paves the way to compact, on-chip integrated, power-efficient graphene based photodetectors for receivers in tele and datacom modules
We fabricated hybrid metal-dielectric nanoantennas and measured their optical response at three different wavelengths. The nanostructure is fabricated on a bilayer film formed by the sequential deposition of silicon and gold on a transparent substrate. The optical characterization is done via fluorescence measurements. We characterized the fluorescence enhancement, as well as the lifetime and detection volume reduction for each wavelength. We observe that the hybrid metal-dielectric nanoantennas behave as enhanced Zero Mode Waveguides in the near-infrared spectral region. Their detection volume is such that they can perform enhanced single-molecule detection at tens of microM. However, a wavelength blue-shift of 40 nm dramatically decreases the performance of the nanoantennas. We compared their behavior with that of a golden ZMW, and we verified that the dielectric silicon layer improves the design. We interpreted the experimental observations with the help of numerical simulations. In addition, the simulations showed that the field enhancement of the structure highly depends on the incoming beam: tightly focused beams yield lower field enhancements than plane-waves.
A fast silicon-graphene hybrid plasmonic waveguide photodetectors beyond 1.55 {mu}m is proposed and realized by introducing an ultra-thin wide silicon-on-insulator ridge core region with a narrow metal cap. With this novel design, the light absorption in graphene is enhanced while the metal absorption loss is reduced simultaneously, which helps greatly improve the responsivity as well as shorten the absorption region for achieving fast responses. Furthermore, metal-graphene-metal sandwiched electrodes are introduced to reduce the metal-graphene contact resistance, which is also helpful for improving the response speed. When the photodetector operates at 2 {mu}m, the measured 3dB-bandwidth is >20 GHz (which is limited by the experimental setup) while the 3dB-bandwith calculated from the equivalent circuit with the parameters extracted from the measured S11 is as high as ~100 GHz. To the best of our knowledge, it is the first time to report the waveguide photodetector at 2 {mu}m with a 3dB-bandwidth over 20 GHz. Besides, the present photodetectors also work very well at 1.55 {mu}m. The measured responsivity is about 0.4 A/W under a bias voltage of -0.3 V for an optical power of 0.16 mW, while the measured 3dB-bandwidth is over 40 GHz (limited by the test setup) and the 3 dB-bandwidth estimated from the equivalent circuit is also as high as ~100 GHz, which is one of the best results reported for silicon-graphene photodetectors at 1.55 {mu}m.
Second order optical nonlinear processes involve the coherent mixing of two electromagnetic waves to generate a new optical frequency, which plays a central role in a variety of applications, such as ultrafast laser systems, rectifiers, modulators, and optical imaging. However, progress is limited in the mid-infrared (MIR) region due to the lack of suitable nonlinear materials. It is desirable to develop a robust system with a strong, electrically tunable second order optical nonlinearity. Here we demonstrate theoretically that AB-stacked bilayer graphene (BLG) can exhibit a giant and tunable second order nonlinear susceptibility chi ^(2) once an in-plane electric field is applied. chi^(2) can be electrically tuned from 0 to ~ {10^5 pm/V}, three orders of magnitude larger than the widely used nonlinear crystal AgGaSe2. We show that the unusually large chi^(2) arises from two different quantum enhanced two-photon processes thanks to the unique electronic spectrum of BLG. The tunable electronic bandgap of BLG adds additional tunability on the resonance of chi^(2), which corresponds to a tunable wavelength ranging from ~2.6 {mu}m to ~3.1 {mu}m for the up-converted photon. Combined with the high electron mobility and optical transparency of the atomically thin BLG, our scheme suggests a new regime of nonlinear photonics based on BLG.
Transparent and conductive films (TCFs) are of great technological importance. The high transmittance, electrical conductivity and mechanical strength make single-walled carbon nanotubes (SWCNTs) a good candidate for their raw material. Despite the ballistic transport in individual SWCNTs, however, the electrical conductivity of their networks is limited by low efficiency of charge tunneling between the tube elements. Here, we demonstrate that the nanotube network sheet resistance at high optical transmittance is decreased by more than 50% when fabricated on graphene and thus provides a comparable improvement as widely adopted gold chloride ($mathrm{AuCl_3}$) doping. However, while Raman spectroscopy reveals substantial changes in spectral features of doped nanotubes, no similar effect is observed in presence of graphene. Instead, temperature dependent transport measurements indicate that graphene substrate reduces the tunneling barrier heights while its parallel conductivity contribution is almost negligible. Finally, we show that combining the graphene substrate and $mathrm{AuCl_3}$ doping, the SWCNT thin films can exhibit sheet resistance as low as 36 $Omega$/sq. at 90% transmittance.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا