Do you want to publish a course? Click here

Cocktails, but no party: multipath-enabled private audio

120   0   0.0 ( 0 )
 Added by Ivan Dokmanic
 Publication date 2018
and research's language is English




Ask ChatGPT about the research

We describe a private audio messaging system that uses echoes to unscramble messages at a few predetermined locations in a room. The system works by splitting the audio into short chunks and emitting them from different loudspeakers. The chunks are filtered so that as they echo around the room, they sum to noise everywhere except at a few chosen focusing spots where they exactly reproduce the intended messages. Unlike in the case of standard personal audio zones, the proposed method renders sound outside the focusing spots unintelligible. Our method essentially depends on echoes: the room acts as a mixing system such that at given points we get the desired output. Finally, we only require a modest number of loudspeakers and only a few impulse response measurements at points where the messages should be delivered. We demonstrate the effectiveness of the proposed method via objective quantitative metrics as well as informal listening experiments in a real room.



rate research

Read More

We address the problem of privately communicating audio messages to multiple listeners in a reverberant room using a set of loudspeakers. We propose two methods based on emitting noise. In the first method, the loudspeakers emit noise signals that are appropriately filtered so that after echoing along multiple paths in the room, they sum up and descramble to yield distinct meaningful audio messages only at specific focusing spots, while being incoherent everywhere else. In the second method, adapted from wireless communications, we project noise signals onto the nullspace of the MIMO channel matrix between the loudspeakers and listeners. Loudspeakers reproduce a sum of the projected noise signals and intended messages. Again because of echoes, the MIMO nullspace changes across different locations in the room. Thus, the listeners at focusing spots hear intended messages, while the acoustic channel of an eavesdropper at any other location is jammed. We show, using both numerical and real experiments, that with a small number of speakers and a few impulse response measurements, audio messages can indeed be communicated to a set of listeners while ensuring negligible intelligibility elsewhere.
81 - Hendrik Purwins 2019
Given the recent surge in developments of deep learning, this article provides a review of the state-of-the-art deep learning techniques for audio signal processing. Speech, music, and environmental sound processing are considered side-by-side, in order to point out similarities and differences between the domains, highlighting general methods, problems, key references, and potential for cross-fertilization between areas. The dominant feature representations (in particular, log-mel spectra and raw waveform) and deep learning models are reviewed, including convolutional neural networks, variants of the long short-term memory architecture, as well as more audio-specific neural network models. Subsequently, prominent deep learning application areas are covered, i.e. audio recognition (automatic speech recognition, music information retrieval, environmental sound detection, localization and tracking) and synthesis and transformation (source separation, audio enhancement, generative models for speech, sound, and music synthesis). Finally, key issues and future questions regarding deep learning applied to audio signal processing are identified.
In recent years, music source separation has been one of the most intensively studied research areas in music information retrieval. Improvements in deep learning lead to a big progress in music source separation performance. However, most of the previous studies are restricted to separating a few limited number of sources, such as vocals, drums, bass, and other. In this study, we propose a network for audio query-based music source separation that can explicitly encode the source information from a query signal regardless of the number and/or kind of target signals. The proposed method consists of a Query-net and a Separator: given a query and a mixture, the Query-net encodes the query into the latent space, and the Separator estimates masks conditioned by the latent vector, which is then applied to the mixture for separation. The Separator can also generate masks using the latent vector from the training samples, allowing separation in the absence of a query. We evaluate our method on the MUSDB18 dataset, and experimental results show that the proposed method can separate multiple sources with a single network. In addition, through further investigation of the latent space we demonstrate that our method can generate continuous outputs via latent vector interpolation.
93 - Zhuo Chen , Jinyu Li , Xiong Xiao 2018
While recent progresses in neural network approaches to single-channel speech separation, or more generally the cocktail party problem, achieved significant improvement, their performance for complex mixtures is still not satisfactory. In this work, we propose a novel multi-channel framework for multi-talker separation. In the proposed model, an input multi-channel mixture signal is firstly converted to a set of beamformed signals using fixed beam patterns. For this beamforming, we propose to use differential beamformers as they are more suitable for speech separation. Then each beamformed signal is fed into a single-channel anchored deep attractor network to generate separated signals. And the final separation is acquired by post selecting the separating output for each beams. To evaluate the proposed system, we create a challenging dataset comprising mixtures of 2, 3 or 4 speakers. Our results show that the proposed system largely improves the state of the art in speech separation, achieving 11.5 dB, 11.76 dB and 11.02 dB average signal-to-distortion ratio improvement for 4, 3 and 2 overlapped speaker mixtures, which is comparable to the performance of a minimum variance distortionless response beamformer that uses oracle location, source, and noise information. We also run speech recognition with a clean trained acoustic model on the separated speech, achieving relative word error rate (WER) reduction of 45.76%, 59.40% and 62.80% on fully overlapped speech of 4, 3 and 2 speakers, respectively. With a far talk acoustic model, the WER is further reduced.
Most modern text-to-speech architectures use a WaveNet vocoder for synthesizing high-fidelity waveform audio, but there have been limitations, such as high inference time, in its practical application due to its ancestral sampling scheme. The recently suggested Parallel WaveNet and ClariNet have achieved real-time audio synthesis capability by incorporating inverse autoregressive flow for parallel sampling. However, these approaches require a two-stage training pipeline with a well-trained teacher network and can only produce natural sound by using probability distillation along with auxiliary loss terms. We propose FloWaveNet, a flow-based generative model for raw audio synthesis. FloWaveNet requires only a single-stage training procedure and a single maximum likelihood loss, without any additional auxiliary terms, and it is inherently parallel due to the characteristics of generative flow. The model can efficiently sample raw audio in real-time, with clarity comparable to previous two-stage parallel models. The code and samples for all models, including our FloWaveNet, are publicly available.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا