Do you want to publish a course? Click here

NLO and NNLO corrections to polarized top quark decays

179   0   0.0 ( 0 )
 Added by Stefan Groote Dr.
 Publication date 2018
  fields
and research's language is English




Ask ChatGPT about the research

We present partial results on NLO and NNLO QCD, and NLO electroweak corrections to polarized top quark decays. In parallel we derive positivity bounds for the polarized structure functions in polarized top quark decays and check them against the perturbative corrections to the structure functions.



rate research

Read More

168 - S. Groote , J.G. Korner 2017
We report on the status of an ongoing calculation of the NLO electroweak corrections to sequential polarized top quark decays $t(uparrow) to X_b +W^+ (to ell^+ + u_ell)$.
We describe predictions for top-quark pair differential distributions at hadron colliders, which combine state-of-the-art NNLO QCD calculations and NLO electroweak corrections together with double resummation at NNLL$$ accuracy of threshold logarithms and small-mass logarithms. This is the first time that such a combination has appeared in the literature. Numerical results are presented for the invariant-mass distribution, the transverse-momentum distribution as well as rapidity distributions.
We present results for the next-to-leading order QCD corrections to the production and semi-leptonic decays of a top quark pair in hadron collisions, retaining all spin correlations. To evaluate the virtual corrections, we employ generalized D-dimensional unitarity. The computation is implemented in a numerical program which allows detailed studies of ttbar-related observables at the Tevatron and the LHC.
We provide an exact calculation of next-to-next-to-leading order (NNLO) massive corrections to Bhabha scattering in QED, relevant for precision luminosity monitoring at meson factories. Using realistic reference event selections, exact numerical results for leptonic and hadronic corrections are given and compared with the corresponding approximate predictions of the event generator BabaYaga@NLO. It is shown that the NNLO massive corrections are necessary for luminosity measurements with per mille precision. At the same time they are found to be well accounted for in the generator at an accuracy level below the one per mille. An update of the total theoretical precision of BabaYaga@NLO is presented and possible directions for a further error reduction are sketched.
We present the full next-to-next-to-leading order (NNLO) corrections to the coefficient function for the polarized cross section $d Deltasigma/d Q$ of the Drell-Yan process. We study the effect of these corrections on the process $p+pto l^+l^-+`X$ at an C.M. energy $sqrt{S}=200 GeV$. All QCD partonic subprocesses have been included provided the lepton pair is created by a virtual photon, which is a valid approximation for a lepton pair invariant mass $Q<50 GeV$. For this reaction the dominant subprocess is given by $q+bar qto gamma^*+`X$ and its higher order corrections so that it provides us with an excellent tool to measure the polarized sea-quark densities.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا