Do you want to publish a course? Click here

Quantum Information Processing and Composite Quantum Fields

60   0   0.0 ( 0 )
 Added by Sanjaye Ramgoolam
 Publication date 2018
  fields
and research's language is English




Ask ChatGPT about the research

Some beautiful identities involving hook contents of Young diagrams have been found in the field of quantum information processing, along with a combinatorial proof. We here give a representation theoretic proof of these identities and a number of generalizations. Our proof is based on trace identities for elements belonging to a class of permutation centralizer algebras. These algebras have been found to underlie the combinatorics of composite gauge invariant operators in quantum field theory, with applications in the AdS/CFT correspondence. Based on these algebras, we discuss some analogies between quantum information processing tasks and the combinatorics of composite quantum fields and argue that this can be fruitful interface between quantum information and quantum field theory, with implications for AdS/CFT.



rate research

Read More

We define solvable quantum mechanical systems on a Hilbert space spanned by bipartite ribbon graphs with a fixed number of edges. The Hilbert space is also an associative algebra, where the product is derived from permutation group products. The existence and structure of this Hilbert space algebra has a number of consequences. The algebra product, which can be expressed in terms of integer ribbon graph reconnection coefficients, is used to define solvable Hamiltonians with eigenvalues expressed in terms of normalized characters of symmetric group elements and degeneracies given in terms of Kronecker coefficients, which are tensor product multiplicities of symmetric group representations. The square of the Kronecker coefficient for a triple of Young diagrams is shown to be equal to the dimension of a sub-lattice in the lattice of ribbon graphs. This leads to an answer to the long-standing question of a combinatoric interpretation of the Kronecker coefficients. As an avenue to explore quantum supremacy and its implications for computational complexity theory, we outline experiments to detect non-vanishing Kronecker coefficients for hypothetical quantum realizations/simulations of these quantum systems. The correspondence between ribbon graphs and Belyi maps leads to an interpretation of these quantum mechanical systems in terms of quantum membrane world-volumes interpolating between string geometries.
Incoherence in the controlled Hamiltonian is an important limitation on the precision of coherent control in quantum information processing. Incoherence can typically be modelled as a distribution of unitary processes arising from slowly varying experimental parameters. We show how it introduces artifacts in quantum process tomography and we explain how the resulting estimate of the superoperator may not be completely positive. We then go on to attack the inverse problem of extracting an effective distribution of unitaries that characterizes the incoherence via a perturbation theory analysis of the superoperator eigenvalue spectra.
We theoretically study single and two-qubit dynamics in the circuit QED architecture. We focus on the current experimental design [Wallraff et al., Nature 431, 162 (2004); Schuster et al., Nature 445, 515 (2007)] in which superconducting charge qubits are capacitively coupled to a single high-Q superconducting coplanar resonator. In this system, logical gates are realized by driving the resonator with microwave fields. Advantages of this architecture are that it allows for multi-qubit gates between non-nearest qubits and for the realization of gates in parallel, opening the possibility of fault-tolerant quantum computation with superconduting circuits. In this paper, we focus on one and two-qubit gates that do not require moving away from the charge-degeneracy `sweet spot. This is advantageous as it helps to increase the qubit dephasing time and does not require modification of the original circuit QED. However these gates can, in some cases, be slower than those that do not use this constraint. Five types of two-qubit gates are discussed, these include gates based on virtual photons, real excitation of the resonator and a gate based on the geometric phase. We also point out the importance of selection rules when working at the charge degeneracy point.
By popular request we post these old (from 2001) lecture notes of the Varenna Summer School Proceedings. The original was published as J. I. Cirac, L. M. Duan, and P. Zoller, in Experimental Quantum Computation and Information Proceedings of the International School of Physics Enrico Fermi, Course CXLVIII, p. 263, edited by F. Di Martini and C. Monroe (IOS Press, Amsterdam, 2002).
As a result of the capabilities of quantum information, the science of quantum information processing is now a prospering, interdisciplinary field focused on better understanding the possibilities and limitations of the underlying theory, on developing new applications of quantum information and on physically realizing controllable quantum devices. The purpose of this primer is to provide an elementary introduction to quantum information processing, and then to briefly explain how we hope to exploit the advantages of quantum information. These two sections can be read independently. For reference, we have included a glossary of the main terms of quantum information.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا