We give direct experimental evidence for the observation of the full transverse self-modulation of a relativistic proton bunch propagating through a dense plasma. The bunch exits the plasma with a density modulation resulting from radial wakefield effects with a period reciprocal to the plasma frequency. We show that the modulation is seeded by using an intense laser pulse co-propagating with the proton bunch which creates a relativistic ionization front within the bunch. We show by varying the plasma density over one order of magnitude that the modulation period scales with the expected dependence on the plasma density.
The AWAKE experiment relies on the self-modulation instability of a long proton bunch to effectively drive wakefields and accelerate an electron bunch to GeV-level energies. During the first experimental run (2016-2018) the instability was made phase reproducible by means of a seeding process: a short laser pulse co-propagates within the proton bunch in a rubidium vapor. Thus, the fast creation of plasma and the onset of beam-plasma interaction within the bunch drives seed wakefields. However, this seeding method leaves the front of the bunch not modulated. The bunch front could self-modulate in a second, preformed plasma and drive wakefields that would interfere with those driven by the (already self-modulated) back of the bunch and with the acceleration process. We present studies of the seeded the self-modulation (SSM) of a long proton bunch using a short electron bunch. The short seed bunch is placed ahead of the proton bunch leading to self-modulation of the entire bunch. Numerical simulations show that this method have other advantages when compared to the ionization front method. We discuss the requirements for the electron bunch parameters (charge, emittance, transverse size at the focal point, length), to effectively seed the self-modulation process. We also present preliminary experimental studies on the electron bunch seed wakefields generation.
We present numerical simulations and experimental results of the self-modulation of a long proton bunch in a plasma with linear density gradients along the beam path. Simulation results agree with the experimental results reported in arXiv:2007.14894v2: with negative gradients, the charge of the modulated bunch is lower than with positive gradients. In addition, the bunch modulation frequency varies with gradient. Simulation results show that dephasing of the wakefields with respect to the relativistic protons along the plasma is the main cause for the loss of charge. The study of the modulation frequency reveals details about the evolution of the self-modulation process along the plasma. In particular for negative gradients, the modulation frequency across time-resolved images of the bunch indicates the position along the plasma where protons leave the wakefields. Simulations and experimental results are in excellent agreement.
High energy particle accelerators have been crucial in providing a deeper understanding of fundamental particles and the forces that govern their interactions. In order to increase the energy or reduce the size of the accelerator, new acceleration schemes need to be developed. Plasma wakefield acceleration, in which the electrons in a plasma are excited, leading to strong electric fields, is one such promising novel acceleration technique. Pioneering experiments have shown that an intense laser pulse or electron bunch traversing a plasma, drives electric fields of 10s GV/m and above. These values are well beyond those achieved in conventional RF accelerators which are limited to ~0.1 GV/m. A limitation of laser pulses and electron bunches is their low stored energy, which motivates the use of multiple stages to reach very high energies. The use of proton bunches is compelling, as they have the potential to drive wakefields and accelerate electrons to high energy in a single accelerating stage. The long proton bunches currently available can be used, as they undergo self-modulation, a particle-plasma interaction which longitudinally splits the bunch into a series of high density microbunches, which then act resonantly to create large wakefields. The AWAKE experiment at CERN uses intense bunches of protons, each of energy 400 GeV, with a total bunch energy of 19 kJ, to drive a wakefield in a 10 m long plasma. Bunches of electrons are injected into the wakefield formed by the proton microbunches. This paper presents measurements of electrons accelerated up to 2 GeV at AWAKE. This constitutes the first demonstration of proton-driven plasma wakefield acceleration. The potential for this scheme to produce very high energy electron bunches in a single accelerating stage means that the results shown here are a significant step towards the development of future high energy particle accelerators.
A plasma flow behind a relativistic electron bunch propagating through a cold plasma is found assuming that the transverse and longitudinal dimensions of the bunch are small and the bunch can be treated as a point charge. In addition, the bunch charge is assumed small. A simplified system of equations for the plasma electrons is derived and it is shown that, through a simple rescaling of variables, the bunch charge can be eliminated from the equations. These equations have a unique solution, with an ion cavity formed behind the driver. The equations are solved numerically and the scaling of the cavity dimensions with the driver charge is obtained. A numerical solution for the case of a positively charged driver is also found.
A linear theory of a wakefield excitation in a plasma-dielectric accelerating structure by a drive electron bunch in the case of an off-axis bunch injection has been constructed. The structure under investigation is a round dielectric-loaded metal waveguide with a channel for the charged particles, filled with homogeneous cold plasma. Derived theory was used to investigate numerically the spatial distribution of the bunch-excited wakefield components, which act on both the drive and witness bunches.