No Arabic abstract
A plasma flow behind a relativistic electron bunch propagating through a cold plasma is found assuming that the transverse and longitudinal dimensions of the bunch are small and the bunch can be treated as a point charge. In addition, the bunch charge is assumed small. A simplified system of equations for the plasma electrons is derived and it is shown that, through a simple rescaling of variables, the bunch charge can be eliminated from the equations. These equations have a unique solution, with an ion cavity formed behind the driver. The equations are solved numerically and the scaling of the cavity dimensions with the driver charge is obtained. A numerical solution for the case of a positively charged driver is also found.
A linear theory of a wakefield excitation in a plasma-dielectric accelerating structure by a drive electron bunch in the case of an off-axis bunch injection has been constructed. The structure under investigation is a round dielectric-loaded metal waveguide with a channel for the charged particles, filled with homogeneous cold plasma. Derived theory was used to investigate numerically the spatial distribution of the bunch-excited wakefield components, which act on both the drive and witness bunches.
The AWAKE experiment relies on the self-modulation instability of a long proton bunch to effectively drive wakefields and accelerate an electron bunch to GeV-level energies. During the first experimental run (2016-2018) the instability was made phase reproducible by means of a seeding process: a short laser pulse co-propagates within the proton bunch in a rubidium vapor. Thus, the fast creation of plasma and the onset of beam-plasma interaction within the bunch drives seed wakefields. However, this seeding method leaves the front of the bunch not modulated. The bunch front could self-modulate in a second, preformed plasma and drive wakefields that would interfere with those driven by the (already self-modulated) back of the bunch and with the acceleration process. We present studies of the seeded the self-modulation (SSM) of a long proton bunch using a short electron bunch. The short seed bunch is placed ahead of the proton bunch leading to self-modulation of the entire bunch. Numerical simulations show that this method have other advantages when compared to the ionization front method. We discuss the requirements for the electron bunch parameters (charge, emittance, transverse size at the focal point, length), to effectively seed the self-modulation process. We also present preliminary experimental studies on the electron bunch seed wakefields generation.
We give direct experimental evidence for the observation of the full transverse self-modulation of a relativistic proton bunch propagating through a dense plasma. The bunch exits the plasma with a density modulation resulting from radial wakefield effects with a period reciprocal to the plasma frequency. We show that the modulation is seeded by using an intense laser pulse co-propagating with the proton bunch which creates a relativistic ionization front within the bunch. We show by varying the plasma density over one order of magnitude that the modulation period scales with the expected dependence on the plasma density.
The paper presents the results of numerical PIC-simulation of positron bunch focusing when acceleration in a plasma dielectric wakefield accelerator. The wakefield was excited by drive electron bunch in quartz dielectric tube, embedded in cylindrical metal waveguide. The internal area of dielectric tube has been filled with radially homogeneous plasma having in general case the vacuum channel along waveguide axis. Results of numerical PIC simulation have shown that it is possible a simultaneous acceleration and focusing of test positron bunch in the wakefield. The dependence of transport and acceleration of positron bunch on size of vacuum channel and waveguide length is studied.
A higher harmonic cavity (HHC), used to cause bunch lengthening for an increase in the Touschek lifetime, is a feature of several fourth generation synchrotron light sources. The desired bunch lengthening is complicated by the presence of required gaps in the bunch train. In a recent paper the author and Venturini studied the effect of various fill patterns by calculating the charge densities in the equilibrium state, through coupled Haissinski equations. We assumed that the only collective force was from the beam loading (wake field) of the harmonic cavity in its lowest mode. The present paper improves the notation and organization of the equations so as to allow an easy inclusion of multiple resonator wake fields. This allows one to study the effects of beam loading of the main accelerating cavity, higher order modes of the cavities, and short range geometric wakes represented by low-$Q$ resonators. As an example these effects are explored for ALS-U. The compensation of the induced voltage in the main cavity, achieved in practice by a feedback system, is modeled by adjustment of the generator voltage through a new iterative scheme. Except in the case of a complete fill, the compensated main cavity beam loading has a substantial effect on the bunch profiles and the Touschek lifetimes. A $Q=6$ resonator, approximating the effect of a realistic short range wake, is also consequential for the bunch forms.