Do you want to publish a course? Click here

Unsupervised Representation Learning of Speech for Dialect Identification

171   0   0.0 ( 0 )
 Added by Suwon Shon
 Publication date 2018
and research's language is English




Ask ChatGPT about the research

In this paper, we explore the use of a factorized hierarchical variational autoencoder (FHVAE) model to learn an unsupervised latent representation for dialect identification (DID). An FHVAE can learn a latent space that separates the more static attributes within an utterance from the more dynamic attributes by encoding them into two different sets of latent variables. Useful factors for dialect identification, such as phonetic or linguistic content, are encoded by a segmental latent variable, while irrelevant factors that are relatively constant within a sequence, such as a channel or a speaker information, are encoded by a sequential latent variable. The disentanglement property makes the segmental latent variable less susceptible to channel and speaker variation, and thus reduces degradation from channel domain mismatch. We demonstrate that on fully-supervised DID tasks, an end-to-end model trained on the features extracted from the FHVAE model achieves the best performance, compared to the same model trained on conventional acoustic features and an i-vector based system. Moreover, we also show that the proposed approach can leverage a large amount of unlabeled data for FHVAE training to learn domain-invariant features for DID, and significantly improve the performance in a low-resource condition, where the labels for the in-domain data are not available.



rate research

Read More

Probabilistic Latent Variable Models (LVMs) provide an alternative to self-supervised learning approaches for linguistic representation learning from speech. LVMs admit an intuitive probabilistic interpretation where the latent structure shapes the information extracted from the signal. Even though LVMs have recently seen a renewed interest due to the introduction of Variational Autoencoders (VAEs), their use for speech representation learning remains largely unexplored. In this work, we propose Convolutional Deep Markov Model (ConvDMM), a Gaussian state-space model with non-linear emission and transition functions modelled by deep neural networks. This unsupervised model is trained using black box variational inference. A deep convolutional neural network is used as an inference network for structured variational approximation. When trained on a large scale speech dataset (LibriSpeech), ConvDMM produces features that significantly outperform multiple self-supervised feature extracting methods on linear phone classification and recognition on the Wall Street Journal dataset. Furthermore, we found that ConvDMM complements self-supervised methods like Wav2Vec and PASE, improving on the results achieved with any of the methods alone. Lastly, we find that ConvDMM features enable learning better phone recognizers than any other features in an extreme low-resource regime with few labeled training examples.
Recently, end-to-end multi-speaker text-to-speech (TTS) systems gain success in the situation where a lot of high-quality speech plus their corresponding transcriptions are available. However, laborious paired data collection processes prevent many institutes from building multi-speaker TTS systems of great performance. In this work, we propose a semi-supervised learning approach for multi-speaker TTS. A multi-speaker TTS model can learn from the untranscribed audio via the proposed encoder-decoder framework with discrete speech representation. The experiment results demonstrate that with only an hour of paired speech data, no matter the paired data is from multiple speakers or a single speaker, the proposed model can generate intelligible speech in different voices. We found the model can benefit from the proposed semi-supervised learning approach even when part of the unpaired speech data is noisy. In addition, our analysis reveals that different speaker characteristics of the paired data have an impact on the effectiveness of semi-supervised TTS.
An effective approach for voice conversion (VC) is to disentangle linguistic content from other components in the speech signal. The effectiveness of variational autoencoder (VAE) based VC (VAE-VC), for instance, strongly relies on this principle. In our prior work, we proposed a cross-domain VAE-VC (CDVAE-VC) framework, which utilized acoustic features of different properties, to improve the performance of VAE-VC. We believed that the success came from more disentangled latent representations. In this paper, we extend the CDVAE-VC framework by incorporating the concept of adversarial learning, in order to further increase the degree of disentanglement, thereby improving the quality and similarity of converted speech. More specifically, we first investigate the effectiveness of incorporating the generative adversarial networks (GANs) with CDVAE-VC. Then, we consider the concept of domain adversarial training and add an explicit constraint to the latent representation, realized by a speaker classifier, to explicitly eliminate the speaker information that resides in the latent code. Experimental results confirm that the degree of disentanglement of the learned latent representation can be enhanced by both GANs and the speaker classifier. Meanwhile, subjective evaluation results in terms of quality and similarity scores demonstrate the effectiveness of our proposed methods.
Speech encodes a wealth of information related to human behavior and has been used in a variety of automated behavior recognition tasks. However, extracting behavioral information from speech remains challenging including due to inadequate training data resources stemming from the often low occurrence frequencies of specific behavioral patterns. Moreover, supervised behavioral modeling typically relies on domain-specific construct definitions and corresponding manually-annotated data, rendering generalizing across domains challenging. In this paper, we exploit the stationary properties of human behavior within an interaction and present a representation learning method to capture behavioral information from speech in an unsupervised way. We hypothesize that nearby segments of speech share the same behavioral context and hence map onto similar underlying behavioral representations. We present an encoder-decoder based Deep Contextualized Network (DCN) as well as a Triplet-Enhanced DCN (TE-DCN) framework to capture the behavioral context and derive a manifold representation, where speech frames with similar behaviors are closer while frames of different behaviors maintain larger distances. The models are trained on movie audio data and validated on diverse domains including on a couples therapy corpus and other publicly collected data (e.g., stand-up comedy). With encouraging results, our proposed framework shows the feasibility of unsupervised learning within cross-domain behavioral modeling.
The dominant approach for music representation learning involves the deep unsupervised model family variational autoencoder (VAE). However, most, if not all, viable attempts on this problem have largely been limited to monophonic music. Normally composed of richer modality and more complex musical structures, the polyphonic counterpart has yet to be addressed in the context of music representation learning. In this work, we propose the PianoTree VAE, a novel tree-structure extension upon VAE aiming to fit the polyphonic music learning. The experiments prove the validity of the PianoTree VAE via (i)-semantically meaningful latent code for polyphonic segments; (ii)-more satisfiable reconstruction aside of decent geometry learned in the latent space; (iii)-this models benefits to the variety of the downstream music generation.

suggested questions

comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا