Do you want to publish a course? Click here

First steps towards the reconstruction of the squark flavour structure

60   0   0.0 ( 0 )
 Added by Bj\\\"orn Herrmann
 Publication date 2018
  fields
and research's language is English




Ask ChatGPT about the research

Assuming the observation of a squark at the Large Hadron Collider, we investigate methods to access its flavour content and thus gain information on the underlying flavour structure of the theory. Based on simple observables, we apply a likelihood inference method to determine the top-flavour content of the observed particle. In addition, we employ a multivariate analysis in order to classify different flavour hypotheses. Both methods are discussed within a simplified model and the more general Minimal Supersymmetric Standard Model including most general squark mixing. We conclude that the likelihood inference may provide an estimation of the top-flavour content if additional knowledge, especially on the gaugino sector is available, while the multivariate analysis identifies different flavour patterns and can accommodate a more minimalistic set of observables.



rate research

Read More

We present an extensive study of the MSSM parameter space allowing for general generation mixing in the squark sector. Employing an MCMC algorithm, we establish the parameter ranges which are allowed with respect to various experimental and theoretical constraints. Based on this analysis, we propose benchmark scenarios for future studies. Moreover, we discuss aspects of signatures at the LHC.
We present an extensive study of non-minimally flavour violating (NMFV) terms in the Lagrangian of the Minimal Supersymmetric Standard Model (MSSM). We impose a variety of theoretical and experimental constraints and perform a detailed scan of the parameter space by means of a Markov Chain Monte-Carlo (MCMC) setup. This represents the first study of several non-zero flavour-violating elements within the MSSM. We present the results of the MCMC scan with a special focus on the flavour-violating parameters. Based on these results, we define benchmark scenarios for future studies of NMFV effects at the LHC.
258 - H. Eberl , A. Bartl , B. Herrmann 2011
We study the effect of squark generation mixing on squark production and decays at the LHC in the Minimal Supersymmetric Standard Model (MSSM). We show that the effect can be very large despite the very strong constraints on quark flavour violation (QFV) from experimental data on B mesons. We find that the two lightest up-type squarks ${tilde u}_{1,2}$ can have large branching ratios for the decays into $c {tildechi_1^0}$ and $t {tildechi_1^0}$ at the same time, leading to QFV signals $p p to c bar t, (t bar c)$ + missing-$E_T$ + $X$ with a significant rate. The observation of this remarkable signature would provide a powerful test of supersymmetric QFV at LHC. This could have a significant impact on the search for squarks and the determination of the underlying MSSM parameters.
134 - K. Hidaka 2013
Quark flavour conserving (QFC) fermionic squark decays, such as ~t_{1,2} -> t neutralino_i, are usually assumed in squark search analyses. Here we study quark flavour violating (QFV) bosonic squark decays, such as ~u_2 -> ~u_1 h^0/Z^0, where the mass eigenstates ~u_{1,2} are mixtures of scharm and stop quarks. We show that the branching ratios of such QFV decays can be very large due to sizable ~c_R - ~t_{R/L} and ~t_R - ~t_L mixing effects despite the very strong constraints on the QFV parameters from B meson data. This can result in remarkable QFV signatures with significant rates at LHC (14 TeV), such as pp -> gluino gluino X -> t c bar{c} bar{c} h^0/Z^0 missing-E_T X and pp -> gluino gluino X -> t t bar{c} bar{c} h^0/Z^0 missing-E_T X. The QFV bosonic squark decays can play an important role in the squark and gluino searches at LHC (14 TeV).
150 - K. Hidaka 2012
We study the effects of squark generation mixing on squark and gluino production and decays at LHC in the Minimal Supersymmetric Standard Model (MSSM) with focus on the mixing between second and third generation squarks. Taking into account the constraints from B-physics experiments we show that various regions in parameter space exist where decays of squarks and/or gluinos into quark flavour violating (QFV) final states can have large branching ratios. Here we consider both fermionic and bosonic decays of squarks. Rates of the corresponding QFV signals, e.g. pp -> t t bar{c} bar{c} missing-E_T X, can be significant at LHC(14 TeV). We find that the inclusion of flavour mixing effects can be important for the search of squarks and gluinos and the determination of the underlying model parameters of the MSSM at LHC.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا