No Arabic abstract
Recently, Herbig--Schwarz--Seaton have shown that $3$-large representations of a reductive group $G$ give rise to a large class of symplectic singularities via Hamiltonian reduction. We show that these singularities are always terminal. We show that they are $mathbb{Q}$-factorial if and only if $G$ has finite abelianization. When $G$ is connected and semi-simple, we show they are actually locally factorial. As a consequence, the symplectic singularities do not admit symplectic resolutions when $G$ is semi-simple. We end with some open questions.
We compute the symplectic reductions for the action of Sp_2n on several copies of C^2n and for all coregular representations of Sl_2. If it exists we give at least one symplectic resolution for each example. In the case Sl_2 acting on sl_2+C^2 we obtain an explicit description of Fus and Namikawas example of two non-equivalent symplectic resolutions connected by a Mukai flop.
In this article we consider the connected component of the identity of $G$-character varieties of compact Riemann surfaces of genus $g > 0$, for connected complex reductive groups $G$ of type $A$ (e.g., $SL_n$ and $GL_n$). We show that these varieties are symplectic singularities and classify which admit symplectic resolutions. The classification reduces to the semi-simple case, where we show that a resolution exists if and only if either $g=1$ and $G$ is a product of special linear groups of any rank and copies of the group $PGL_2$, or if $g=2$ and $G = (SL_2)^m$ for some $m$.
We study the existence of symplectic resolutions of quotient singularities V/G where V is a symplectic vector space and G acts symplectically. Namely, we classify the symplectically irreducible and imprimitive groups, excluding those of the form $K rtimes S_2$ where $K < SL_2(C)$, for which the corresponding quotient singularity admits a projective symplectic resolution. As a consequence, for $dim V eq 4$, we classify all quotient singularities $V/G$ admitting a projective symplectic resolution which do not decompose as a product of smaller-dimensional quotient singularities, except for at most four explicit singularities, that occur in dimensions at most 10, for whom the question of existence remains open.
We introduce the notion of a conical symplectic variety, and show that any symplectic resolution of such a variety is isomorphic to the Springer resolution of a nilpotent orbit in a semisimple Lie algebra, composed with a linear projection.
We survey the theory of Poisson traces (or zeroth Poisson homology) developed by the authors in a series of recent papers. The goal is to understand this subtle invariant of (singular) Poisson varieties, conditions for it to be finite-dimensional, its relationship to the geometry and topology of symplectic resolutions, and its applications to quantizations. The main technique is the study of a canonical D-module on the variety. In the case the variety has finitely many symplectic leaves (such as for symplectic singularities and Hamiltonian reductions of symplectic vector spaces by reductive groups), the D-module is holonomic, and hence the space of Poisson traces is finite-dimensional. As an application, there are finitely many irreducible finite-dimensional representations of every quantization of the variety. Conjecturally, the D-module is the pushforward of the canonical D-module under every symplectic resolution of singularities, which implies that the space of Poisson traces is dual to the top cohomology of the resolution. We explain many examples where the conjecture is proved, such as symmetric powers of du Val singularities and symplectic surfaces and Slodowy slices in the nilpotent cone of a semisimple Lie algebra. We compute the D-module in the case of surfaces with isolated singularities, and show it is not always semisimple. We also explain generalizations to arbitrary Lie algebras of vector fields, connections to the Bernstein-Sato polynomial, relations to two-variable special polynomials such as Kostka polynomials and Tutte polynomials, and a conjectural relationship with deformations of symplectic resolutions. In the appendix we give a brief recollection of the theory of D-modules on singular varieties that we require.