Do you want to publish a course? Click here

Helicity Maximization of Structured Light to Empower Nanoscale Chiral Matter Interaction

73   0   0.0 ( 0 )
 Added by Mina Hanifeh
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

Structured light enables the characterization of chirality of optically small nanoparticles by taking advantage of the helicity maximization concept recently introduced in[1]. By referring to fields with nonzero helicity density as chiral fields, we first investigate the properties of two chiral optical beams in obtaining helicity density localization and maximization requirements. The investigated beams include circularly polarized Gaussian beams and also an optical beam properly composed by a combination of a radially and an azi-muthally polarized beam. To acquire further enhancement and localization of helicity density beyond the diffraction limit, we also study chiral fields at the vicinity of a spherical dielectric nanoantenna and demon-strate that the helicity density around such a nanoantenna is a superposition of helicity density of the illu-minating field, scattered field, and an interference helicity term. Moreover, we illustrate when the nanoan-tenna is illuminated by a proper combination of azimuthal and radially polarized beams, the scattered nearfields satisfy the helicity maximization conditions beyond the diffraction limit. The application of the concept of helicity maximization to nanoantennas and generating optimally chiral nearfield result in helici-ty enhancement which is of great advantage in areas like detection of nanoscale chiral samples, microsco-py, and optical manipulation of chiral nanoparticles.



rate research

Read More

We propose the concept of helicity maximization applicable to structured light and obtain a universal rela-tion for the maximum of helicity density at a given field energy density. We further demonstrate that us-ing structured light with maximized helicity density eliminates the need of the specific knowledge of en-ergy and helicity densities in determining the chirality of a nanoparticle. The helicity maximization con-cept generalizes the use of the dissymmetry factor in chirality detection to any chiral structure light il-luminating nanoparticles.
Optimally-chiral electromagnetic fields with maximized helicity density, recently introduced in [1], enable chirality characterization of optically small nanoparticles. Here, we demonstrate a technique to obtain optimally-chiral nearfields that leads to the maximization of helicity density, under the constraint of constant energy density, beyond the diffraction limit. We show how optimally-chiral illumination induces balanced electric and magnetic dipole moments in an achiral dielectric nanoantenna which leads to generating optimally-chiral scattered and total nearfield. In particular, we explore helicity and energy densities in nearfield of a spherical dielectric nanoantenna illuminated by an optimally-chiral combination of azimuthally and radially polarized beams that generates parallel induced electric and magnetic dipole moments that in turn also generate optimally-chiral scattered field with the same handedness of the incident field. The application of helicity maximization to nearfields results in helicity enhancement at nanoscale which is of great advantage in the detection of nanoscale chiral samples, microscopy, and optical manipulation of chiral nanoparticles.
Research on spatially-structured light has seen an explosion in activity over the past decades, powered by technological advances for generating such light, and driven by questions of fundamental science as well as engineering applications. In this review we highlight work on the interaction of vector light fields with atoms, and matter in general. This vibrant research area explores the full potential of light, with clear benefits for classical as well as quantum applications.
Chiral edge modes in photonic topological insulators host great potential to realize slow-light waveguides with topological protection. Increasing the winding of the chiral edge mode around the Brillouin zone can lead to broadband topological slow light with ultra-low group velocity. However, this effect usually requires careful modifications on a relatively large area around the lattice edge. Here we present a simple and general scheme to achieve broadband topological slow light through coupling the chiral edge modes with flat bands. In this approach, modifications inside the topological lattice are not required. Instead, only several additional resonators that support the flat bands need to be attached at the lattice edge. We demonstrate our idea numerically using a gyromagnetic photonic crystal, which is ready to be tested at microwave frequencies.
188 - G. T. Adamashvili 2020
The nonlinear coherent interaction of light with the dispersive and Kerr-type third-order susceptibility medium containing optical impurity atoms or semiconductor quantum dots is considered. Using the generalized perturbation reduction method, the nonlinear wave equation is reduced to the coupled nonlinear Schrodinger equations. It is shown that the second-order derivatives play a key role in the description of the process of formation of the bound state of two breathers oscillating with the sum and the difference of frequencies and wave numbers. The resonant, nonresonant and hybrid mechanisms of the formation of the two-component nonlinear pulse -- the vector breather are realized depending on the light and medium parameters. Explicit analytical expressions for the profile and parameters of the nonlinear pulse are presented. The conditions of the excitation of resonant, nonresonant and hybrid nonlinear waves are discussed. In the particular case, the resonant vector breather coincides with the vector $0pi$ pulse of self-induced transparency.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا