Do you want to publish a course? Click here

Dynamical Constraints on the HR 8799 Planets with GPI

107   0   0.0 ( 0 )
 Added by Jason Wang
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

The HR 8799 system uniquely harbors four young super-Jupiters whose orbits can provide insights into the systems dynamical history and constrain the masses of the planets themselves. Using the Gemini Planet Imager (GPI), we obtained down to one milliarcsecond precision on the astrometry of these planets. We assessed four-planet orbit models with different levels of constraints and found that assuming the planets are near 1:2:4:8 period commensurabilities, or are coplanar, does not worsen the fit. We added the prior that the planets must have been stable for the age of the system (40 Myr) by running orbit configurations from our posteriors through $N$-body simulations and varying the masses of the planets. We found that only assuming the planets are both coplanar and near 1:2:4:8 period commensurabilities produces dynamically stable orbits in large quantities. Our posterior of stable coplanar orbits tightly constrains the planets orbits, and we discuss implications for the outermost planet b shaping the debris disk. A four-planet resonance lock is not necessary for stability up to now. However, planet pairs d and e, and c and d, are each likely locked in two-body resonances for stability if their component masses are above $6~M_{rm{Jup}}$ and $7~M_{rm{Jup}}$, respectively. Combining the dynamical and luminosity constraints on the masses using hot-start evolutionary models and a system age of $42 pm 5$~Myr, we found the mass of planet b to be $5.8 pm 0.5~M_{rm{Jup}}$, and the masses of planets c, d, and e to be $7.2_{-0.7}^{+0.6}~M_{rm{Jup}}$ each.



rate research

Read More

We present new astrometric measurements from our ongoing monitoring campaign of the HR 8799 directly imaged planetary system. These new data points were obtained with NIRC2 on the W.M. Keck II 10 meter telescope between 2009 and 2014. In addition, we present updated astrometry from previously published observations in 2007 and 2008. All data were reduced using the SOSIE algorithm, which accounts for systematic biases present in previously published observations. This allows us to construct a self-consistent data set derived entirely from NIRC2 data alone. From this dataset, we detect acceleration for two of the planets (HR 8799b and e) at $>$3$sigma$. We also assess possible orbital parameters for each of the four planets independently. We find no statistically significant difference in the allowed inclinations of the planets. Fitting the astrometry while forcing coplanarity also returns $chi^2$ consistent to within 1$sigma$ of the best fit values, suggesting that if inclination offsets of $lesssim$20$^{o}$ are present, they are not detectable with current data. Our orbital fits also favor low eccentricities, consistent with predictions from dynamical modeling. We also find period distributions consistent to within 1$sigma$ with a 1:2:4:8 resonance between all planets. This analysis demonstrates the importance of minimizing astrometric systematics when fitting for solutions to highly undersampled orbits.
HR 8799 hosts four directly imaged giant planets, but none has a mass measured from first principles. We present the first dynamical mass measurement in this planetary system, finding that the innermost planet HR~8799~e has a mass of $9.6^{+1.9}_{-1.8} , M_{rm Jup}$. This mass results from combining the well-characterized orbits of all four planets with a new astrometric acceleration detection (5$sigma$) from the Gaia EDR3 version of the Hipparcos-Gaia Catalog of Accelerations. We find with 95% confidence that HR~8799~e is below $13, M_{rm Jup}$, the deuterium-fusing mass limit. We derive a hot-start cooling age of $42^{+24}_{-16}$,Myr for HR~8799~e that agrees well with its hypothesized membership in the Columba association but is also consistent with an alternative suggested membership in the $beta$~Pictoris moving group. We exclude the presence of any additional $gtrsim$5-$M_{rm Jup}$ planets interior to HR~8799~e with semi-major axes between $approx$3-16,au. We provide proper motion anomalies and a matrix equation to solve for the mass of any of the planets of HR~8799 using only mass ratios between the planets.
Using the Keck Planet Imager and Characterizer (KPIC), we obtained high-resolution (R$sim$35,000) $K$-band spectra of the four planets orbiting HR 8799. We clearly detected water{} and CO in the atmospheres of HR 8799 c, d, and e, and tentatively detected a combination of CO and water{} in b. These are the most challenging directly imaged exoplanets that have been observed at high spectral resolution to date when considering both their angular separations and flux ratios. We developed a forward modeling framework that allows us to jointly fit the spectra of the planets and the diffracted starlight simultaneously in a likelihood-based approach and obtained posterior probabilities on their effective temperatures, surface gravities, radial velocities, and spins. We measured $vsin(i)$ values of $10.1^{+2.8}_{-2.7}$~km/s for HR 8799 d and $15.0^{+2.3}_{-2.6}$~km/s for HR 8799 e, and placed an upper limit of $< 14$~km/s of HR 8799 c. Under two different assumptions of their obliquities, we found tentative evidence that rotation velocity is anti-correlated with companion mass, which could indicate that magnetic braking with a circumplanetary disk at early times is less efficient at spinning down lower mass planets.
During the first-light run of the Gemini Planet Imager (GPI) we obtained K-band spectra of exoplanets HR 8799 c and d. Analysis of the spectra indicates that planet d may be warmer than planet c. Comparisons to recent patchy cloud models and previously obtained observations over multiple wavelengths confirm that thick clouds combined with horizontal variation in the cloud cover generally reproduce the planets spectral energy distributions. When combined with the 3 to 4 um photometric data points, the observations provide strong constraints on the atmospheric methane content for both planets. The data also provide further evidence that future modeling efforts must include cloud opacity, possibly including cloud holes, disequilibrium chemistry, and super-solar metallicity.
176 - Sasha Hinkley 2011
We report the results of Keck L-band non-redundant aperture masking of HR 8799, a system with four confirmed planetary mass companions at projected orbital separations of 14 to 68 AU. We use these observations to place constraints on the presence of planets and brown dwarfs at projected orbital separations inside of 10 AU---separations out of reach to more conventional direct imaging methods. No companions were detected at better than 99% confidence between orbital separations of 0.8 to 10 AU. Assuming an age of 30 Myr and adopting the Baraffe models, we place upper limits to planetary mass companions of 80, 60, and 11 Jupiter Masses at projected orbital separations of 0.8, 1, and 3-10 AU respectively. Our constraints on massive companions to HR 8799 will help clarify ongoing studies of the orbital stability of this multi-planet system, and may illuminate future work dedicated to understanding the dust-free hole interior to ~6 AU.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا