Do you want to publish a course? Click here

Bifurcations from an attracting heteroclinic cycle under periodic forcing

183   0   0.0 ( 0 )
 Publication date 2018
  fields
and research's language is English




Ask ChatGPT about the research

There are few examples of non-autonomous vector fields exhibiting complex dynamics that may be proven analytically. We analyse a family of periodic perturbations of a weakly attracting robust heteroclinic network defined on the two-sphere. We derive the first return map near the heteroclinic cycle for small amplitude of the perturbing term, and we reduce the analysis of the non-autonomous system to that of a two-dimensional map on a cylinder. Interesting dynamical features arise from a discrete-time Bogdanov-Takens bifurcation. When the perturbation strength is small the first return map has an attracting invariant closed curve that is not contractible on the cylinder. Near the centre of frequency locking there are parameter values with bistability: the invariant curve coexists with an attracting fixed point. Increasing the perturbation strength there are periodic solutions that bifurcate into a closed contractible invariant curve and into a region where the dynamics is conjugate to a full shift on two symbols.

rate research

Read More

We present a comprehensive mechanism for the emergence of rotational horseshoes and strange attractors in a class of two-parameter families of periodically-perturbed differential equations defining a flow on a three-dimensional manifold. When both parameters are zero, its flow exhibits an attracting heteroclinic network associated to two periodic solutions. After slightly increasing both parameters, while keeping a two-dimensional connection unaltered, we focus our attention in the case where the two-dimensional invariant manifolds of the periodic solutions do not intersect. We prove a wide range of dynamical behaviour, ranging from an attracting quasi-periodic torus to rotational horseshoes and Henon-like strange attractors. We illustrate our results with an explicit example.
This article studies routes to chaos occurring within a resonance wedge for a 3-parametric family of differential equations acting on a 3-sphere. Our starting point is an autonomous vector field whose flow exhibits a weakly attracting heteroclinic network made by two 1-dimensional connections and a 2-dimensional separatrix between two equilibria with different Morse indices. After changing the parameters, while keeping the 1-dimensional connections unaltered, we concentrate our study in the case where the 2-dimensional invariant manifolds of the equilibria do not intersect. We derive the first return map near the ghost of the attractor and we reduce the analysis of the system to a 2-dimensional map on the cylinder. Complex dynamical features arise from a discrete-time Bogdanov-Takens singularity, which may be seen as the organizing center by which one can obtain infinitely many attracting tori, strange attractors, infinitely many sinks and non-trivial contracting wandering domains. These dynamical phenomena occur within a structure that we call resonance wedge. As an application, we may see the classical Arnold tongue as a projection of a resonance wedge. The results are general, extend to other contexts and lead to a fine-tuning of the theory.
We study the dynamics of the periodically-forced May-Leonard system. We extend previous results on the field and we identify different dynamical regimes depending on the strength of attraction $delta$ of the network and the frequency $omega$ of the periodic forcing. We focus our attention in the case $deltagg1$ and $omega approx 0$, where we show that, for a positive Lebesgue measure set of parameters (amplitude of the periodic forcing), the dynamics are dominated by strange attractors with fully stochastic properties, supporting a Sinai-Ruelle-Bowen (SRB) measure. The proof is performed by using the Wang and Young Theory of rank-one strange attractors. This work ends the discussion about the existence of observable and sustainable chaos in this scenario. We also identify some bifurcations occurring in the transition from an attracting two-torus to rank-one strange attractors, whose existence has been suggested by numerical simulations.
157 - Sylvain Crovisier 2008
We prove that any diffeomorphism of a compact manifold can be C^1-approximated by a diffeomorphism which exhibits a homoclinic bifurcation (a homoclinic tangency or a heterodimensional cycle) or by a diffeomorphism which is partially hyperbolic (its chain-recurrent set splits into partially hyperbolic pieces whose centre bundles have dimensions less or equal to two). We also study in a more systematic way the central models introduced in arXiv:math/0605387.
We study the dynamics arising when two identical oscillators are coupled near a Hopf bifurcation where we assume a parameter $epsilon$ uncouples the system at $epsilon=0$. Using a normal form for $N=2$ identical systems undergoing Hopf bifurcation, we explore the dynamical properties. Matching the normal form coefficients to a coupled Wilson-Cowan oscillator network gives an understanding of different types of behaviour that arise in a model of perceptual bistability. Notably, we find bistability between in-phase and anti-phase solutions that demonstrates the feasibility for synchronisation to act as the mechanism by which periodic inputs can be segregated (rather than via strong inhibitory coupling, as in existing models). Using numerical continuation we confirm our theoretical analysis for small coupling strength and explore the bifurcation diagrams for large coupling strength, where the normal form approximation breaks down.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا