Do you want to publish a course? Click here

The host galaxies of double compact objects merging in the local Universe

65   0   0.0 ( 0 )
 Added by Michela Mapelli
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

We investigate the host galaxies of compact objects merging in the local Universe, by combining the results of binary population-synthesis simulations with the Illustris cosmological box. Double neutron stars (DNSs) merging in the local Universe tend to form in massive galaxies (with stellar mass $>10^{9}$ M$_odot$) and to merge in the same galaxy where they formed, with a short delay time between the formation of the progenitor stars and the DNS merger. In contrast, double black holes (DBHs) and black hole $-$ neutron star binaries (BHNSs) form preferentially in small galaxies (with stellar mass $<10^{10}$ M$_odot$) and merge either in small or in larger galaxies, with a long delay time. This result is an effect of metallicity: merging DBHs and BHNSs form preferentially from metal-poor progenitors ($Zleq{}0.1$ Z$_odot$), which are more common in high-redshift galaxies and in local dwarf galaxies, whereas merging DNSs are only mildly sensitive to progenitors metallicity and thus are more abundant in massive galaxies nowadays. The mass range of DNS hosts we predict in this work is consistent with the mass range of short gamma-ray burst hosts.



rate research

Read More

We explore the different formation channels of merging double compact objects (DCOs: BH-BH/BH-NS/NS-NS) that went through a ultraluminous X-ray phase (ULX: X-ray sources with apparent luminosity exceeding $10^{39}$ erg s$^{-1}$). There are many evolutionary scenarios which can naturally explain the formation of merging DCO systems: isolated binary evolution, dynamical evolution inside dense clusters and chemically homogeneous evolution of field binaries. It is not clear which scenario is responsible for the majority of LIGO/Virgo sources. Finding connections between ULXs and DCOs can potentially point to the origin of merging DCOs as more and more ULXs are discovered. We use the StarTrack population synthesis code to show how many ULXs will form merging DCOs in the framework of isolated binary evolution. Our merger rate calculation shows that in the local Universe typically 50% of merging BH-BH progenitor binaries have evolved through a ULX phase. This indicates that ULXs can be used to study the origin of LIGO/Virgo sources. We have also estimated that the fraction of observed ULXs that will form merging DCOs in future varies between 5% to 40% depending on common envelope model and metallicity.
We study the properties of tidal disruption event (TDE) host galaxies in the context of a catalog of ~500,000 galaxies from the Sloan Digital Sky Survey. We explore whether selection effects can account for the overrepresentation of TDEs in E+A/post-starburst galaxies by creating matched galaxy samples. Accounting for possible selection effects due to black hole (BH) mass, redshift completeness, strong AGN presence, bulge colors, and surface brightness can reduce the apparent overrepresentation of TDEs in E+A host galaxies by a factor of ~4 (from ~$times$100-190 to ~$times$25-48), but cannot fully explain the preference. We find that TDE host galaxies have atypical photometric properties compared to similar, typical galaxies. In particular, TDE host galaxies tend to live in or near the green valley between star-forming and passive galaxies, and have bluer bulge colors ($Delta (g-r) approx 0.3$ mag), lower half-light surface brightnesses (by ~1 mag/arcsec$^2$), higher Sersic indices ($Delta n_{rm g} approx 3$), and higher bulge-to-total-light ratios ($Delta B/T approx 0.5$) than galaxies with matched BH masses. We find that TDE host galaxies appear more centrally concentrated and that all have high galaxy Sersic indices and $B/T$ fractions---on average in the top 10% of galaxies of the same BH mass---suggesting a higher nuclear stellar density. We identify a region in Sersic index and BH mass parameter space that contains ~2% of our reference catalog galaxies but $ge!60%$ of TDE host galaxies. The unique photometric properties of TDE host galaxies may be useful for selecting candidate TDEs for spectroscopic follow-up observations in large transient surveys.
We present the largest publicly available catalog of interacting dwarf galaxies. It includes 177 nearby merging dwarf galaxies of stellar mass M$_{*}$ $<$ 10$^{10}$M$_{sun}$ and redshifts z $<$ 0.02. These galaxies are selected by visual inspection of publicly available archival imaging from two wide-field optical surveys (SDSS III and the Legacy Survey), and they possess low surface brightness features that are likely the result of an interaction between dwarf galaxies. We list UV and optical photometric data which we use to estimate stellar masses and star formation rates. So far, the study of interacting dwarf galaxies has largely been done on an individual basis, and lacks a sufficiently large catalog to give statistics on the properties of interacting dwarf galaxies, and their role in the evolution of low mass galaxies. We expect that this public catalog can be used as a reference sample to investigate the effects of the tidal interaction on the evolution of star-formation, morphology/structure of dwarf galaxies. Our sample is overwhelmingly dominated by star-forming galaxies, and they are generally found significantly below the red-sequence in the color-magnitude relation. The number of early-type galaxies is only 3 out of 177. We classify them, according to observed low surface brightness features, into various categories including shells, stellar streams, loops, antennae or simply interacting. We find that dwarf-dwarf interactions tend to prefer the low density environment. Only 41 out of the 177 candidate dwarf-dwarf interaction systems have giant neighbors within a sky projected distance of 700 kpc and a line of sight radial velocity range $pm$700 km/s and, compared to the LMC-SMC, they are generally located at much larger sky-projected distances from their nearest giant neighbor.
We present the localization and host galaxies of one repeating and two apparently non-repeating Fast Radio Bursts. FRB20180301A was detected and localized with the Karl G. Jansky Very Large Array to a star-forming galaxy at $z=0.3304$. FRB20191228A, and FRB20200906A were detected and localized by the Australian Square Kilometre Array Pathfinder to host galaxies at $z=0.2430$ and $z=0.3688$, respectively. We combine these with 13 other well-localised FRBs in the literature, and analyse the host galaxy properties. We find no significant differences in the host properties of repeating and apparently non-repeating FRBs. FRB hosts are moderately star-forming, with masses slightly offset from the star-forming main-sequence. Star formation and low-ionization nuclear emission-line region (LINER) emission are major sources of ionization in FRB host galaxies, with the former dominant in repeating FRB hosts. FRB hosts do not track stellar mass and star formation as seen in field galaxies (95% confidence). FRBs are rare in massive red galaxies, suggesting that progenitor formation channels are not solely dominated by delayed channels which lag star formation by gigayears. The global properties of FRB hosts are indistinguishable from core-collapse supernovae (CCSNe) and short gamma-ray bursts (SGRBs) hosts (95% confidence), and the spatial offset (from galaxy centers) of FRBs is consistent with that of the Galactic neutron star population. The spatial offsets of FRBs (normalized to the galaxy effective radius) mostly differs from that of globular clusters (GCs) in late- and early-type galaxies with 95% confidence.
We measure the projected cross-correlation between low redshift (z < 0.5) far-IR selected galaxies in the SDP field of the Herschel-ATLAS (H-ATLAS) survey and optically selected galaxies from the Galaxy and Mass Assembly (GAMA) redshift survey. In order to obtain robust correlation functions, we restrict the analysis to a subset of 969 out of 6900 H-ATLAS galaxies, which have reliable optical counterparts with r<19.4 mag and well-determined spectroscopic redshifts. The overlap region between the two surveys is 12.6 sq. deg; the matched sample has a median redshift of z ~ 0.2. The cross-correlation of GAMA and H-ATLAS galaxies within this region can be fitted by a power law, with correlation length r_0 ~ 4.63 +/- 0.51 Mpc. Comparing with the corresponding auto-correlation function of GAMA galaxies within the SDP field yields a relative bias (averaged over 2-8 Mpc) of H-ATLAS and GAMA galaxies of b_H/b_G ~ 0.6. Combined with clustering measurements from previous optical studies, this indicates that most of the low redshift H-ATLAS sources are hosted by halos with masses comparable to that of the Milky Way. The correlation function appears to depend on the 250 um luminosity, L_250, with bright (median luminosity u L_250 ~ 1.6 x 10^10 L_sun) objects being somewhat more strongly clustered than faint ( u L_250 ~ 4.0 x 10^9 L_sun) objects. This implies that galaxies with higher dust-obscured star formation rates are hosted by more massive halos.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا