Do you want to publish a course? Click here

Characterizing the FRB host galaxy population and its connection to transients in the local and extragalactic Universe

185   0   0.0 ( 0 )
 Added by Shivani Bhandari Dr
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present the localization and host galaxies of one repeating and two apparently non-repeating Fast Radio Bursts. FRB20180301A was detected and localized with the Karl G. Jansky Very Large Array to a star-forming galaxy at $z=0.3304$. FRB20191228A, and FRB20200906A were detected and localized by the Australian Square Kilometre Array Pathfinder to host galaxies at $z=0.2430$ and $z=0.3688$, respectively. We combine these with 13 other well-localised FRBs in the literature, and analyse the host galaxy properties. We find no significant differences in the host properties of repeating and apparently non-repeating FRBs. FRB hosts are moderately star-forming, with masses slightly offset from the star-forming main-sequence. Star formation and low-ionization nuclear emission-line region (LINER) emission are major sources of ionization in FRB host galaxies, with the former dominant in repeating FRB hosts. FRB hosts do not track stellar mass and star formation as seen in field galaxies (95% confidence). FRBs are rare in massive red galaxies, suggesting that progenitor formation channels are not solely dominated by delayed channels which lag star formation by gigayears. The global properties of FRB hosts are indistinguishable from core-collapse supernovae (CCSNe) and short gamma-ray bursts (SGRBs) hosts (95% confidence), and the spatial offset (from galaxy centers) of FRBs is consistent with that of the Galactic neutron star population. The spatial offsets of FRBs (normalized to the galaxy effective radius) mostly differs from that of globular clusters (GCs) in late- and early-type galaxies with 95% confidence.



rate research

Read More

The physical properties of fast radio burst (FRB) host galaxies provide important clues towards the nature of FRB sources. The 16 FRB hosts identified thus far span three orders of magnitude in mass and specific star-formation rate, implicating a ubiquitously occurring progenitor object. FRBs localised with ~arcsecond accuracy also enable effective searches for associated multi-wavelength and multi-timescale counterparts, such as the persistent radio source associated with FRB 20121102A. Here we present a localisation of the repeating source FRB 20201124A, and its association with a host galaxy (SDSS J050803.48+260338.0, z=0.098) and persistent radio source. The galaxy is massive ($sim3times10^{10} M_{odot}$), star-forming (few solar masses per year), and dusty. Very Large Array and Very Long Baseline Array observations of the persistent radio source measure a luminosity of $1.2times10^{29}$ erg s$^{-1}$ Hz$^{-1}$, and show that is extended on scales $gtrsim50$ mas. We associate this radio emission with the ongoing star-formation activity in SDSS J050803.48+260338.0. Deeper, more detailed observations are required to better utilise the milliarcsecond-scale localisation of FRB 20201124A reported from the European VLBI Network, and determine the origin of the large dispersion measure ($150-220$ pc cm$^{-3}$) contributed by the host. SDSS J050803.48+260338.0 is an order of magnitude more massive than any galaxy or stellar system previously associated with a repeating FRB source, but is comparable to the hosts of so far non-repeating FRBs, further building the link between the two apparent populations.
We report on the host association of FRB 20181030A, a repeating fast radio burst (FRB) with a low dispersion measure (DM, 103.5 pc cm$^{-3}$) discovered by CHIME/FRB Collaboration et al. (2019a). Using baseband voltage data saved for its repeat bursts, we localize the FRB to a sky area of 5.3 sq. arcmin (90% confidence). Within the FRB localization region, we identify NGC 3252 as the most promising host, with an estimated chance coincidence probability $< 2.5 times 10^{-3}$. Moreover, we do not find any other galaxy with M$_{r} < -15$ AB mag within the localization region to the maximum estimated FRB redshift of 0.05. This rules out a dwarf host 5 times less luminous than any FRB host discovered to date. NGC 3252 is a star-forming spiral galaxy, and at a distance of $approx$ 20 Mpc, it is one of the closest FRB hosts discovered thus far. From our archival radio data search, we estimate a 3$sigma$ upper limit on the luminosity of a persistent compact radio source (source size $<$ 0.3 kpc at 20 Mpc) at 3 GHz to be ${rm 2 times 10^{26} erg~s^{-1} Hz^{-1}}$, at least 1500 times smaller than that of the FRB 20121102A persistent radio source. We also argue that a population of young millisecond magnetars alone cannot explain the observed volumetric rate of repeating FRBs. Finally, FRB 20181030A is a promising source for constraining FRB emission models due to its proximity, and we strongly encourage its multi-wavelength follow-up.
We study the properties of tidal disruption event (TDE) host galaxies in the context of a catalog of ~500,000 galaxies from the Sloan Digital Sky Survey. We explore whether selection effects can account for the overrepresentation of TDEs in E+A/post-starburst galaxies by creating matched galaxy samples. Accounting for possible selection effects due to black hole (BH) mass, redshift completeness, strong AGN presence, bulge colors, and surface brightness can reduce the apparent overrepresentation of TDEs in E+A host galaxies by a factor of ~4 (from ~$times$100-190 to ~$times$25-48), but cannot fully explain the preference. We find that TDE host galaxies have atypical photometric properties compared to similar, typical galaxies. In particular, TDE host galaxies tend to live in or near the green valley between star-forming and passive galaxies, and have bluer bulge colors ($Delta (g-r) approx 0.3$ mag), lower half-light surface brightnesses (by ~1 mag/arcsec$^2$), higher Sersic indices ($Delta n_{rm g} approx 3$), and higher bulge-to-total-light ratios ($Delta B/T approx 0.5$) than galaxies with matched BH masses. We find that TDE host galaxies appear more centrally concentrated and that all have high galaxy Sersic indices and $B/T$ fractions---on average in the top 10% of galaxies of the same BH mass---suggesting a higher nuclear stellar density. We identify a region in Sersic index and BH mass parameter space that contains ~2% of our reference catalog galaxies but $ge!60%$ of TDE host galaxies. The unique photometric properties of TDE host galaxies may be useful for selecting candidate TDEs for spectroscopic follow-up observations in large transient surveys.
We present SMA and NOEMA observations of the host galaxy of FRB 121102 in the CO 3-2 and 1-0 transitions, respectively. We do not detect emission from either transition. We set $3sigma$ upper limits to the CO luminosity $L_{CO} < 2.5 times 10^7,{rm K,km,s}^{-1} {, rm pc^{-2}}$ for CO 3-2 and $L_{CO} < 2.3 times 10^9, {rm K,km,s}^{-1} {, rm pc^{-2}}$ for CO 1-0. For Milky-Way-like star formation properties, we set a $3sigma$ upper limit on the $H_2$ mass of $2.5 times 10^8 rm M_{odot}$, slightly less than the predictions for the $H_2$ mass based on the star formation rate. The true constraint on the $H_2$ mass may be significantly higher, however, because of the reduction in CO luminosity that is common forlow-metallicity dwarf galaxies like the FRB host galaxy. These results demonstrate the challenge of identifying the nature of FRB progenitors through study of the host galaxy molecular gas. We also place a limit of 42 $mu$Jy ($3sigma$) on the continuum flux density of the persistent radio source at 97 GHz, consistent with a power-law extrapolation of the low frequency spectrum, which may arise from an AGN or other nonthermal source.
49 - Jay S. Chittidi 2020
We present a high-resolution analysis of the host galaxy of fast radio burst FRB 190608, an SBc galaxy at $z=0.11778$ (hereafter HG 190608), to dissect its local environment and its contributions to the FRB properties. Our Hubble Space Telescope WFC3/UVIS image reveals that the sub-arcsecond localization of FRB 190608 is coincident with a knot of star-formation ($Sigma_{SFR} = 1.2 times 10^{-2}~ M_{odot} , kpc^{-2}$) in one of the prominent spiral arms of HG 190608. This is confirmed by H$beta$ emission present in our Keck/KCWI integral field spectrum of the galaxy with a surface brightness of $mu_{Hbeta} = (3.35pm0.18)times10^{-17};erg;s^{-1};cm^{-2};arcsec^{-2}$. We infer an extinction-corrected H$alpha$ surface brightness and compute a dispersion measure from the interstellar medium of HG 190608 of ${DM}_{Host,ISM} = 82 pm 35~ pc , cm^{-3}$. The galaxy rotates with a circular velocity $v_{circ} = 141 pm 8~ km , s^{-1}$ at an inclination $i_{gas} = 37 pm 3^circ$, giving a dynamical mass $M_{halo}^{dyn} approx 10^{11.96 pm 0.08}~ M_{odot}$. A surface photometric analysis of the galaxy using FORS2 imaging suggests a stellar disk inclination of $i_{stellar} = 26 pm 3^circ$. The dynamical mass estimate implies a halo contribution to the dispersion measure of ${DM}_{Host,Halo} = 55 pm 25; pc , cm^{-3}$ subject to assumptions on the density profile and fraction of baryons retained. The relatively high temporal broadening ($tau = 3.3 pm 0.2 ; ms$ at 1.28 GHz) and rotation measure ($ RM = 353 pm 2; rad ; m^{-2}$) (Day et al. 2020) of FRB 190608 may be attributable to both turbulent gas within the spiral arm and gas local to the FRB progenitor. In contrast to previous high-resolution studies of FRB progenitor environments, we find no evidence for disturbed morphology, emission, nor kinematics for FRB 190608.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا