Do you want to publish a course? Click here

Dynamic Fano resonances: From toy model to resonant Mie scattering

78   0   0.0 ( 0 )
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

Based on the substantial difference in the response time for the resonant and background partitions at stepwise variations of the exiting signal, a simple exactly integrable model describing the dynamic Fano resonance (DFRs) is proposed. The model does not have any fitting parameters, may include any number of resonant partitions and exhibits high accuracy. It is shown that at the point of the destructive interference any sharp variation of the amplitude of the excitation (no matter an increase or a decrease) gives rise to pronounced flashes in the intensity of the output signal. In particular, the flash should appear behind the trailing edge of the exciting pulse, when the excitation is already over. The model is applied to explain the DFRs at the light scattering by a dielectric cylinder with two resonant modes excited simultaneously and exhibits the excellent agreement with the results of the direct numerical integration of the Maxwell equations.

rate research

Read More

We study numerically and analytically effects of resonant light scattering by subwavelength high-index particles with weak dissipation in the vicinity of the destructive interference at Fano resonances. We show that sharp variations in the envelope of the incident pulse may initiate unusual, counterintuitive dynamics of the scattering associated with interference of modes with fast and slow relaxation. In particular, we observe and explain intensive sharp spikes in scattering cross section just behind the leading and trailing edges of the incident pulse. The latter occurs when the incident pulse is over and is explained by the release of the electromagnetic energy accumulated in the particle at the previous stages of the scattering. To mimic the numerical results, we develop two tractable analytical models. Both reproduce with high accuracy all the dynamic effects of the numerics. The models allow us to reveal the physical grounds for the spikes explained by the violation of balance between the resonant and background partitions during the transient. Besides, we compare the models with each other and reveal their mutual advantages and disadvantages.
We demonstrate that directional electromagnetic scattering can be realized from a artificial Mie resonant strcuture which supports electric and magnetic dipole modes simultaneously. The directivity of the far-field radiation pattern can be switched by changing the incident light wavelength as well as tailoring the geometric parameters of the structure. Particularly, the electric quadrupole at higher frequency contribute significantly to the scattered fields, leading to enhancement of the directionality. In addition, we further design a quasiperiodic spoof Mie resonant structure by alternately inserting two materials into the slits. The results show that multi-band directional light scattering are realized by exciting multiple electric and magnetic dipole modes with different frequencies in the quasiperiodic structure. The presented design concept is general from microwave to terahertz region and can be applied for various advanced optical devices, such as antenna, metamaterial and metsurface.
Exciting optical effects such as polarization control, imaging, and holography were demonstrated at the nanoscale using the complex and irregular structures of nanoparticles with the multipole Mie-resonances in the optical range. The optical response of such particles can be simulated either by full wave numerical simulations or by the widely used analytical coupled multipole method (CMM), however, an analytical solution in the framework of CMM can be obtained only in a limited number of cases. In this paper, a modification of the CMM in the framework of the Born series and its applicability for simulation of light scattering by finite nanosphere structures, maintaining both dipole and quadrupole resonances, are investigated. The Born approximation simplifies an analytical consideration of various systems and helps shed light on physical processes ongoing in that systems. Using Mie theory and Greens functions approach, we analytically formulate the rigorous coupled dipole-quadrupole equations and their solution in the different-order Born approximations. We analyze in detail the resonant scattering by dielectric nanosphere structures such as dimer and ring to obtain the convergence conditions of the Born series and investigate how the physical characteristics such as absorption in particles, type of multipole resonance, and geometry of ensemble influence the convergence of Born series and its accuracy.
If the duration of the input pulse resonantly interacting with a system is comparable or smaller than the time required for the system to achieve the steady state, transient effects become important. For complex systems, a quantitative description of these effects may be a very difficult problem. We suggest a simple tractable model to describe these phenomena. The model is based on approximation of the actual Fourier spectrum of the system by that composed of the superposition of the spectra of uncoupled harmonic oscillators (normal modes). The physical nature of the underlying system is employed to select the proper approximation. This reduces the dynamics of the system to tractable dynamics of just a few driven oscillators. The method is simple and may be applied to many types of resonances. As an illustration, the approach is employed to describe the sharp intensive spikes observed in the recent numerical simulation of short light pulses scattered by a cylinder in the proximity of destructive Fano interference [Phys. Rev. A., vol. 100, 053824 (2019)] and exhibits excellent agreement with the numerics.
Dielectric optical nanoantennas play an important role in color displays, metasurface holograms, and wavefront shaping applications. They usually exploit Mie resonances as supported on nanostructures with high refractive index, such as Si and TiO2. However, these resonances normally cannot be tuned. Although phase change materials, such as the germanium-antimony-tellurium alloys and post transition metal oxides, such as ITO, have been used to tune optical antennas in the near infrared spectrum, tunable dielectric antennae in the visible spectrum remain to be demonstrated. In this paper, we designed and experimentally demonstrated tunable dielectric nanoantenna arrays with Mie resonances in the visible spectrum, exploiting phase transitions in wide-bandgap Sb2S3 nano-resonators. In the amorphous state, Mie resonances in these Sb2S3 nanostructures give rise to a strong structural color in reflection mode. Thermal annealing induced crystallization and laser induced amorphization of the Sb2S3 resonators allow the color to be tuned reversibly. We believe these tunable Sb2S3 nanoantennae arrays will enable a wide variety of tunable nanophotonic applications, such as high-resolution color displays, holographic displays, and miniature LiDAR systems.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا