Do you want to publish a course? Click here

Explicit class field theory and the algebraic geometry of $Lambda$-rings

75   0   0.0 ( 0 )
 Added by James M. Borger
 Publication date 2018
  fields
and research's language is English




Ask ChatGPT about the research

We consider generalized $Lambda$-structures on algebras and schemes over the ring of integers $mathit{O}_K$ of a number field $K$. When $K=mathbb{Q}$, these agree with the $lambda$-ring structures of algebraic K-theory. We then study reduced finite flat $Lambda$-rings over $mathit{O}_K$ and show that the maximal ones are classified in a Galois theoretic manner by the ray class monoid of Deligne and Ribet. Second, we show that the periodic loci on any $Lambda$-scheme of finite type over $mathit{O}_K$ generate a canonical family of abelian extensions of $K$. This raises the possibility that $Lambda$-schemes could provide a framework for explicit class field theory, and we show that the classical explicit class field theories for the rational numbers and imaginary quadratic fields can be set naturally in this framework. This approach has the further merit of allowing for some precise questions in the spirit of Hilberts 12th Problem. In an interlude which might be of independent interest, we define rings of periodic big Witt vectors and relate them to the global class field theoretical mathematics of the rest of the paper.



rate research

Read More

128 - Igor Nikolaev 2021
It is shown that the real class field towers are always finite. The proof is based on Castelnuovos theory of the algebraic surfaces and a functor from such surfaces to the Etesi C*-algebras.
We construct a family of oriented extended topological field theories using the AKSZ construction in derived algebraic geometry, which can be viewed as an algebraic and topological version of the classical AKSZ field theories that occur in physics. These have as their targets higher categories of symplectic derived stacks, with higher morphisms given by iterated Lagrangian correspondences. We define these, as well as analogous higher categories of oriented derived stacks and iterated oriented cospans, and prove that all objects are fully dualizable. Then we set up a functorial version of the AKSZ construction, first implemented in this context by Pantev-Toen-Vaquie-Vezzosi, and show that it induces a family of symmetric monoidal functors from oriented stacks to symplectic stacks. Finally, we construct forgetful functors from the unoriented bordism $(infty,n)$-category to cospans of spaces, and from the oriented bordism $(infty,n)$-category to cospans of spaces equipped with an orientation; the latter combines with the AKSZ functors by viewing spaces as constant stacks, giving the desired field theories.
In a previous paper, we constructed a category of (phi, Gamma)-modules associated to any adic space over Q_p with the property that the etale (phi, Gamma)-modules correspond to etale Q_p-local systems; these involve sheaves of period rings for Scholzes pro-etale topology. In this paper, we first extend Kiehls theory of coherent sheaves on rigid analytic spaces to a theory of pseudocoherent sheaves on adic spaces, then construct a corresponding theory of pseudocoherent (phi, Gamma)-modules. We then relate these objects to a more explicit construction in case the space comes equipped with a suitable infinite etale cover; in this case, one can decomplete the period sheaves and establish an analogue of the theorem of Cherbonnier-Colmez on the overconvergence of p-adic Galois representations. As an application, we show that relative (phi, Gamma)-modules in our sense coincide with the relative (phi, Gamma)-modules constructed by Andreatta and Brinon in the geometric setting where the latter can be constructed. As another application, we establish that the category of pseudocoherent (phi, Gamma)-modules on an arbitrary rigid analytic space over a p-adic field is abelian, satisfies the ascending chain condition, and is stable under various natural derived functors (including Hom, tensor product, and pullback). Applications to the etale cohomology of pro-etale local systems will be given in a subsequent paper.
Bruinier and Yang conjectured a formula for an intersection number on the arithmetic Hilbert modular surface, CM(K).T_m, where CM(K) is the zero-cycle of points corresponding to abelian surfaces with CM by a primitive quartic CM field K, and T_m is the Hirzebruch-Zagier divisors parameterizing products of elliptic curves with an m-isogeny between them. In this paper, we examine fields not covered by Yangs proof of the conjecture. We give numerical evidence to support the conjecture and point to some interesting anomalies. We compare the conjecture to both the denominators of Igusa class polynomials and the number of solutions to the embedding problem stated by Goren and Lauter.
132 - James Borger , Bart de Smit 2011
Let O be the ring of integers of a number field K. For an O-algebra R which is torsion free as an O-module we define what we mean by a Lambda_O-ring structure on R. We can determine whether a finite etale K-algebra E with Lambda_O-ring structure has an integral model in terms of a Deligne-Ribet monoid of K. This a commutative monoid whose invertible elements form a ray class group.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا