Bruinier and Yang conjectured a formula for an intersection number on the arithmetic Hilbert modular surface, CM(K).T_m, where CM(K) is the zero-cycle of points corresponding to abelian surfaces with CM by a primitive quartic CM field K, and T_m is the Hirzebruch-Zagier divisors parameterizing products of elliptic curves with an m-isogeny between them. In this paper, we examine fields not covered by Yangs proof of the conjecture. We give numerical evidence to support the conjecture and point to some interesting anomalies. We compare the conjecture to both the denominators of Igusa class polynomials and the number of solutions to the embedding problem stated by Goren and Lauter.
Bruinier and Yang conjectured a formula for intersection numbers on an arithmetic Hilbert modular surface, and as a consequence obtained a conjectural formula for CM(K).G_1 under strong assumptions on the ramification in K. Yang later proved this conjecture under slightly stronger assumptions on the ramification. In recent work, Lauter and Viray proved a different formula for CM(K).G_1 for primitive quartic CM fields with a mild assumption, using a method of proof independent from that of Yang. In this paper we show that these two formulas agree, for a class of primitive quartic CM fields which is slightly larger than the intersection of the fields considered by Yang and Lauter and Viray. Furthermore, the proof that these formulas agree does not rely on the results of Yang or Lauter and Viray. As a consequence of our proof, we conclude that the Bruinier-Yang formula holds for a slightly largely class of quartic CM fields K than what was proved by Yang, since it agrees with the Lauter-Viray formula, which is proved in those cases. The factorization of these intersection numbers has applications to cryptography: precise formulas for them allow one to compute the denominators of Igusa class polynomials, which has important applications to the construction of genus 2 curves for use in cryptography.
In this paper we prove an explicit formula for the arithmetic intersection number (CM(K).G1)_{ell} on the Siegel moduli space of abelian surfaces, generalizing the work of Bruinier-Yang and Yang. These intersection numbers allow one to compute the denominators of Igusa class polynomials, which has important applications to the construction of genus 2 curves for use in cryptography. Bruinier and Yang conjectured a formula for intersection numbers on an arithmetic Hilbert modular surface, and as a consequence obtained a conjectural formula for the intersection number (CM(K).G1)_{ell} under strong assumptions on the ramification of the primitive quartic CM field K. Yang later proved this conjecture assuming that O_K is freely generated by one element over the ring of integers of the real quadratic subfield. In this paper, we prove a formula for (CM(K).G1)_{ell} for more general primitive quartic CM fields, and we use a different method of proof than Yang. We prove a tight bound on this intersection number which holds for all primitive quartic CM fields. As a consequence, we obtain a formula for a multiple of the denominators of the Igusa class polynomials for an arbitrary primitive quartic CM field. Our proof entails studying the Embedding Problem posed by Goren and Lauter and counting solutions using our previous article that generalized work of Gross-Zagier and Dorman to arbitrary discriminants.
Let $K$ be a quartic CM field, that is, a totally imaginary quadratic extension of a real quadratic number field. In a 1962 article titled On the classfields obtained by complex multiplication of abelian varieties, Shimura considered a particular family ${F_K(m) : m in mathbb{Z} >0 }$ of abelian extensions of $K$, and showed that the Hilbert class field $H_K$ of $K$ is contained in $F_K(m)$ for some positive integer m. We make this m explicit. We then give an algorithm that computes a set of defining polynomials for the Hilbert class field using the field $F_K(m)$. Our proof-of-concept implementation of this algorithm computes a set of defining polynomials much faster than current implementations of the generic Kummer algorithm for certain examples of quartic CM fields.
We determine the irreducible components of Igusa varieties for Shimura varieties of Hodge type and use that to determine the irreducible components of central leaves. In particular, we show that the discrete Hecke-orbit conjecture is false in general. Our method combines recent work of DAddezio on monodromy of compatible local systems with a generalisation of a method of Hida, using the Honda-Tate theory for Shimura varieties of Hodge type developed by Kisin-Madapusi Pera-Shin. We also determine the irreducible components of Newton strata in Shimura varieties of Hodge type by combining our results with recent work of Zhou-Zhu.
Let $D$ be a negative integer congruent to $0$ or $1bmod{4}$ and $mathcal{O}=mathcal{O}_D$ be the corresponding order of $ K=mathbb{Q}(sqrt{D})$. The Hilbert class polynomial $H_D(x)$ is the minimal polynomial of the $j$-invariant $ j_D=j(mathbb{C}/mathcal{O})$ of $mathcal{O}$ over $K$. Let $n_D=(mathcal{O}_{mathbb{Q}( j_D)}:mathbb{Z}[ j_D])$ denote the index of $mathbb{Z}[ j_D]$ in the ring of integers of $mathbb{Q}(j_D)$. Suppose $p$ is any prime. We completely determine the factorization of $H_D(x)$ in $mathbb{F}_p[x]$ if either $p mid n_D$ or $p mid D$ is inert in $K$ and the $p$-adic valuation $v_p(n_D)leq 3$. As an application, we analyze the key space of Oriented Supersingular Isogeny Diffie-Hellman (OSIDH) protocol proposed by Col`o and Kohel in 2019 which is the roots set of the Hilbert class polynomial in $mathbb{F}_{p^2}$.
Helen Grundman
,Jennifer Johnson-Leung
,Kristin Lauter
.
(2010)
.
"Igusa class polynomials, embeddings of quartic CM fields, and arithmetic intersection theory"
.
Bianca Viray
هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا