Do you want to publish a course? Click here

An introduction to Bayesian inference in gravitational-wave astronomy: parameter estimation, model selection, and hierarchical models

115   0   0.0 ( 0 )
 Added by Eric Thrane
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

This is an introduction to Bayesian inference with a focus on hierarchical models and hyper-parameters. We write primarily for an audience of Bayesian novices, but we hope to provide useful insights for seasoned veterans as well. Examples are drawn from gravitational-wave astronomy, though we endeavor for the presentation to be understandable to a broader audience. We begin with a review of the fundamentals: likelihoods, priors, and posteriors. Next, we discuss Bayesian evidence, Bayes factors, odds ratios, and model selection. From there, we describe how posteriors are estimated using samplers such as Markov Chain Monte Carlo algorithms and nested sampling. Finally, we generalize the formalism to discuss hyper-parameters and hierarchical models. We include extensive appendices discussing the creation of credible intervals, Gaussian noise, explicit marginalization, posterior predictive distributions, and selection effects.



rate research

Read More

Gravitational wave (GW) detection is now commonplace and as the sensitivity of the global network of GW detectors improves, we will observe $mathcal{O}(100)$s of transient GW events per year. The current methods used to estimate their source parameters employ optimally sensitive but computationally costly Bayesian inference approaches where typical analyses have taken between 6 hours and 5 days. For binary neutron star and neutron star black hole systems prompt counterpart electromagnetic (EM) signatures are expected on timescales of 1 second -- 1 minute and the current fastest method for alerting EM follow-up observers, can provide estimates in $mathcal{O}(1)$ minute, on a limited range of key source parameters. Here we show that a conditional variational autoencoder pre-trained on binary black hole signals can return Bayesian posterior probability estimates. The training procedure need only be performed once for a given prior parameter space and the resulting trained machine can then generate samples describing the posterior distribution $sim 6$ orders of magnitude faster than existing techniques.
The analysis of gravitational wave data involves many model selection problems. The most important example is the detection problem of selecting between the data being consistent with instrument noise alone, or instrument noise and a gravitational wave signal. The analysis of data from ground based gravitational wave detectors is mostly conducted using classical statistics, and methods such as the Neyman-Pearson criteria are used for model selection. Future space based detectors, such as the emph{Laser Interferometer Space Antenna} (LISA), are expected to produced rich data streams containing the signals from many millions of sources. Determining the number of sources that are resolvable, and the most appropriate description of each source poses a challenging model selection problem that may best be addressed in a Bayesian framework. An important class of LISA sources are the millions of low-mass binary systems within our own galaxy, tens of thousands of which will be detectable. Not only are the number of sources unknown, but so are the number of parameters required to model the waveforms. For example, a significant subset of the resolvable galactic binaries will exhibit orbital frequency evolution, while a smaller number will have measurable eccentricity. In the Bayesian approach to model selection one needs to compute the Bayes factor between competing models. Here we explore various methods for computing Bayes factors in the context of determining which galactic binaries have measurable frequency evolution. The methods explored include a Reverse Jump Markov Chain Monte Carlo (RJMCMC) algorithm, Savage-Dickie density ratios, the Schwarz-Bayes Information Criterion (BIC), and the Laplace approximation to the model evidence. We find good agreement between all of the approaches.
Model fitting is possibly the most extended problem in science. Classical approaches include the use of least-squares fitting procedures and maximum likelihood methods to estimate the value of the parameters in the model. However, in recent years, Bayesian inference tools have gained traction. Usually, Markov chain Monte Carlo methods are applied to inference problems, but they present some disadvantages, particularly when comparing different models fitted to the same dataset. Other Bayesian methods can deal with this issue in a natural and effective way. We have implemented an importance sampling algorithm adapted to Bayesian inference problems in which the power of the noise in the observations is not known a priori. The main advantage of importance sampling is that the model evidence can be derived directly from the so-called importance weights -- while MCMC methods demand considerable postprocessing. The use of our adaptive target, adaptive importance sampling (ATAIS) method is shown by inferring, on the one hand, the parameters of a simulated flaring event which includes a damped oscillation {and, on the other hand, real data from the Kepler mission. ATAIS includes a novel automatic adaptation of the target distribution. It automatically estimates the variance of the noise in the model. ATAIS admits parallelisation, which decreases the computational run-times notably. We compare our method against a nested sampling method within a model selection problem.
To support and guide an extensive experimental research into systems biology of signaling pathways, increasingly more mechanistic models are being developed with hopes of gaining further insight into biological processes. In order to analyse these models, computational and statistical techniques are needed to estimate the unknown kinetic parameters. This chapter reviews methods from frequentist and Bayesian statistics for estimation of parameters and for choosing which model is best for modeling the underlying system. Approximate Bayesian Computation (ABC) techniques are introduced and employed to explore different hypothesis about the JAK-STAT signaling pathway.
The label switching problem arises in the Bayesian analysis of models containing multiple indistinguishable parameters with arbitrary ordering. Any permutation of these parameters is equivalent, therefore models with many such parameters have extremely multi-modal posterior distributions. It is difficult to sample efficiently from such posteriors. This paper discusses a solution to this problem which involves carefully mapping the input parameter space to a high dimensional hypertriangle. It is demonstrated that this solution is efficient even for large numbers of parameters and can be easily applied alongside any stochastic sampling algorithm. This method is illustrated using two example problems from the field of gravitational wave astronomy.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا