Do you want to publish a course? Click here

Yes, IoU loss is submodular - as a function of the mispredictions

51   0   0.0 ( 0 )
 Added by Matthew Blaschko
 Publication date 2018
and research's language is English




Ask ChatGPT about the research

This note is a response to [7] in which it is claimed that [13, Proposition 11] is false. We demonstrate here that this assertion in [7] is false, and is based on a misreading of the notion of set membership in [13, Proposition 11]. We maintain that [13, Proposition 11] is true. ([7] = arXiv:1809.00593, [13] = arXiv:1512.07797)



rate research

Read More

Continuous submodular functions are a category of generally non-convex/non-concave functions with a wide spectrum of applications. The celebrated property of this class of functions - continuous submodularity - enables both exact minimization and approximate maximization in poly. time. Continuous submodularity is obtained by generalizing the notion of submodularity from discrete domains to continuous domains. It intuitively captures a repulsive effect amongst different dimensions of the defined multivariate function. In this paper, we systematically study continuous submodularity and a class of non-convex optimization problems: continuous submodular function maximization. We start by a thorough characterization of the class of continuous submodular functions, and show that continuous submodularity is equivalent to a weak version of the diminishing returns (DR) property. Thus we also derive a subclass of continuous submodular functions, termed continuous DR-submodular functions, which enjoys the full DR property. Then we present operations that preserve continuous (DR-)submodularity, thus yielding general rules for composing new submodular functions. We establish intriguing properties for the problem of constrained DR-submodular maximization, such as the local-global relation. We identify several applications of continuous submodular optimization, ranging from influence maximization, MAP inference for DPPs to provable mean field inference. For these applications, continuous submodularity formalizes valuable domain knowledge relevant for optimizing this class of objectives. We present inapproximability results and provable algorithms for two problem settings: constrained monotone DR-submodular maximization and constrained non-monotone DR-submodular maximization. Finally, we extensively evaluate the effectiveness of the proposed algorithms.
71 - I-Sheng Yang 2020
Causal machine-learning is about predicting the net-effect (true-lift) of treatments. Given the data of a treatment group and a control group, it is similar to a standard supervised-learning problem. Unfortunately, there is no similarly well-defined loss function due to the lack of point-wise true values in the data. Many advances in modern machine-learning are not directly applicable due to the absence of such loss function. We propose a novel method to define a loss function in this context, which is equal to mean-square-error (MSE) in a standard regression problem. Our loss function is universally applicable, thus providing a general standard to evaluate the quality of any model/strategy that predicts the true-lift. We demonstrate that despite its novel definition, one can still perform gradient descent directly on this loss function to find the best fit. This leads to a new way to train any parameter-based model, such as deep neural networks, to solve causal machine-learning problems without going through the meta-learner strategy.
Uncertainty sampling, a popular active learning algorithm, is used to reduce the amount of data required to learn a classifier, but it has been observed in practice to converge to different parameters depending on the initialization and sometimes to even better parameters than standard training on all the data. In this work, we give a theoretical explanation of this phenomenon, showing that uncertainty sampling on a convex loss can be interpreted as performing a preconditioned stochastic gradient step on a smoothed version of the population zero-one loss that converges to the population zero-one loss. Furthermore, uncertainty sampling moves in a descent direction and converges to stationary points of the smoothed population zero-one loss. Experiments on synthetic and real datasets support this connection.
In this paper, we introduce a novel technique for constrained submodular maximization, inspired by barrier functions in continuous optimization. This connection not only improves the running time for constrained submodular maximization but also provides the state of the art guarantee. More precisely, for maximizing a monotone submodular function subject to the combination of a $k$-matchoid and $ell$-knapsack constraint (for $ellleq k$), we propose a potential function that can be approximately minimized. Once we minimize the potential function up to an $epsilon$ error it is guaranteed that we have found a feasible set with a $2(k+1+epsilon)$-approximation factor which can indeed be further improved to $(k+1+epsilon)$ by an enumeration technique. We extensively evaluate the performance of our proposed algorithm over several real-world applications, including a movie recommendation system, summarization tasks for YouTube videos, Twitter feeds and Yelp business locations, and a set cover problem.
Crowdsourcing has become widely used in supervised scenarios where training sets are scarce and difficult to obtain. Most crowdsourcing models in the literature assume labelers can provide answers to full questions. In classification contexts, full questions require a labeler to discern among all possible classes. Unfortunately, discernment is not always easy in realistic scenarios. Labelers may not be experts in differentiating all classes. In this work, we provide a full probabilistic model for a shorter type of queries. Our shorter queries only require yes or no responses. Our model estimates a joint posterior distribution of matrices related to labelers confusions and the posterior probability of the class of every object. We developed an approximate inference approach, using Monte Carlo Sampling and Black Box Variational Inference, which provides the derivation of the necessary gradients. We built two realistic crowdsourcing scenarios to test our model. The first scenario queries for irregular astronomical time-series. The second scenario relies on the image classification of animals. We achieved results that are comparable with those of full query crowdsourcing. Furthermore, we show that modeling labelers failures plays an important role in estimating true classes. Finally, we provide the community with two real datasets obtained from our crowdsourcing experiments. All our code is publicly available.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا