Do you want to publish a course? Click here

White Dwarf Collisions, a promising scenario to account for meteoritic anomalies

72   0   0.0 ( 0 )
 Added by Jordi Isern
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

It is commonly accepted that collisions between white dwarfs (WD) are rare events that only occur in the dense interior of globular clusters or in the dense outskirts around the central galactic black holes, and are therefore disregarded as an important source of Type Ia supernovae (SNIa). Although the majority of these encounters will not result in a SNIa event, many of them will produce mass ejections. Under the appropriate circumstances, this material can become part of a protostar nebula, including the pre-solar one, in the form of stardust leading to the existence of chemical anomalies in meteorites. We describe a WD-WD collision scenario that potentially might explain the so called Ne-E anomaly found in some primitive meteorites like Orgueil and Murchison.



rate research

Read More

The analysis of noble gases in primitive meteorites has shown the existence of anomalous isotopic abundances when compared with the average Solar System values. In particular it has been found that some graphite grains contain a unexpected high abundance of neon-22. This excess of neon-22 is usually attributed to the radioactive decay of sodium-22 produced in the O/Ne burning layer of a core collapse supernova. In this talk we speculate about a different origin, the disruption of a crystallized white dwarf by a compact object (white dwarf, neutron star or black hole).
We present a comprehensive study of white dwarf collisions as an avenue for creating type Ia supernovae. Using a smooth particle hydrodynamics code with a 13-isotope, {alpha}-chain nuclear network, we examine the resulting 56Ni yield as a function of total mass, mass ratio, and impact parameter. We show that several combinations of white dwarf masses and impact parameters are able to produce sufficient quantities of 56Ni to be observable at cosmological distances. We find the 56Ni production in double-degenerate white dwarf collisions ranges from sub-luminous to the super-luminous, depending on the parameters of the collision. For all mass pairs, collisions with small impact parameters have the highest likelihood of detonating, but 56Ni production is insensitive to this parameter in high-mass combinations, which significantly increases their likelihood of detection. We also find that the 56Ni dependence on total mass and mass ratio is not linear, with larger mass primaries producing disproportionately more 56Ni than their lower mass secondary counterparts, and symmetric pairs of masses producing more 56Ni than asymmetric pairs.
We present optical high-speed photometry of three millisecond pulsars with low-mass ($< 0.3 M_{odot}$) white dwarf companions, bringing the total number of such systems with follow-up time-series photometry to five. We confirm the detection of pulsations in one system, the white dwarf companion to PSR J1738+0333, and show that the pulsation frequencies and amplitudes are variable over many months. A full asteroseismic analysis for this star is under-constrained, but the mode periods we observe are consistent with expectations for a $M_{star} = 0.16 - 0.19 M_{odot}$ white dwarf, as suggested from spectroscopy. We also present the empirical boundaries of the instability strip for low-mass white dwarfs based on the full sample of white dwarfs, and discuss the distinction between pulsating low-mass white dwarfs and subdwarf A/F stars.
130 - J. Nordhaus 2011
Since their initial discovery, the origin of isolated white dwarfs (WDs) with magnetic fields in excess of $sim$1 MG has remained a mystery. Recently, the formation of these high-field magnetic WDs has been observationally linked to strong binary interactions incurred during post-main-sequence evolution. Planetary, brown dwarf or stellar companions located within a few AU of main-sequence stars may become engulfed during the primarys expansion off the main sequence. Sufficiently low-mass companions in-spiral inside a common envelope until they are tidally shredded near the natal white dwarf. Formation of an accretion disk from the disrupted companion provides a source of turbulence and shear which act to amplify magnetic fields and transport them to the WD surface. We show that these disk-generated fields explain the observed range of magnetic field strengths for isolated, high-field magnetic WDs. Additionally, we discuss a high-mass binary analogue which generates a strongly-magnetized WD core inside a pre-collapse, massive star. Subsequent core-collapse to a neutron star may produce a magnetar.
We present the discovery of the first T dwarf + white dwarf binary system LSPM 1459+0857AB, confirmed through common proper motion and spectroscopy. The white dwarf is a high proper motion object from the LSPM catalogue that we confirm spectroscopically to be a relatively cool (Teff=5535+-45K) and magnetic (B~2MG) hydrogen-rich white dwarf, with an age of at least 4.8Gyrs. The T dwarf is a recent discovery from the UKIRT Infrared Deep Sky Survey (ULAS 1459+0857), and has a spectral type of T4.5+-0.5 and a distance in the range 43-69pc. With an age constraint (inferred from the white dwarf) of >4.8Gyrs we estimate Teff=1200-1500K and logg=5.4-5.5 for ULAS 1459+0857, making it a benchmark T dwarf with well constrained surface gravity. We also compare the T dwarf spectra with the latest LYON group atmospheric model predictions, which despite some shortcomings are in general agreement with the observed properties of ULAS 1459+0857. The separation of the binary components (16,500-26,500AU, or 365 arcseconds on the sky) is consistent with an evolved version of the more common brown dwarf + main-sequence binary systems now known, and although the system has a wide separation, it is shown to be statistically robust as a non spurious association. The observed colours of the T dwarf show that it is relatively bright in the z band compared to other T dwarfs of similar type, and further investigation is warranted to explore the possibility that this could be a more generic indicator of older T dwarfs. Future observations of this binary system will provide even stronger constraints on the T dwarf properties, and additional systems will combine to give a more comprehensively robust test of the model atmospheres in this temperature regime.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا