Do you want to publish a course? Click here

The VIS detector system of SOXS

97   0   0.0 ( 0 )
 Added by Rosario Cosentino
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

SOXS will be a unique spectroscopic facility for the ESO NTT telescope able to cover the optical and NIR bands thanks to two different arms: the UV-VIS (350-850 nm), and the NIR (800-1800 nm). In this article, we describe the design of the visible camera cryostat and the architecture of the acquisition system. The UV-VIS detector system is based on a e2v CCD 44-82, a custom detector head coupled with the ESO continuous ow cryostats (CFC) cooling system and the NGC CCD controller developed by ESO. This paper outlines the status of the system and describes the design of the different parts that made up the UV-VIS arm and is accompanied by a series of contributions describing the SOXS design solutions.



rate research

Read More

SOXS will be the new spectroscopic facility for the ESO NTT telescope able to cover the optical and NIR bands by using two different arms: the UV-VIS (350-850 nm), and the NIR (800-2000 nm). In this article, we describe the development status of the visible camera cryostat, the architecture of the acquisition system and the progress in the electronic design. The UV-VIS detector system is based on a CCD detector 44-82 from e2v, a custom detector head, coupled with the ESO continuous flow cryostats (CFC), a custom cooling system, based on a Programmable Logic Controller (PLC), and the New General Controller (NGC) developed by ESO. This paper outlines the development status of the system, describes the design of the different parts that make up the UV-VIS arm and is accompanied by a series of information describing the SOXS design solutions in the mechanics and in the electronics parts. The first tests of the detector system with the UV-VIS camera will be shown.
We present our progress on the UV-VIS arm of Son Of X-Shooter (SOXS), a new spectrograph for the NTT. Our design splits the spectral band into four sub-bands that are imaged onto a single detector. Each band uses an optimized high efficiency grating that operates in 1st order (m=1). In our previous paper we presented the concept and preliminary design. SOXS passed a Final Design Review in July 2018 and is well into the construction phase. Here we present the final design, performances of key manufactured elements, and the progress in the assembly. Based on the as-built elements, the expected throughput of the visual arm will be >55%. This paper is accompanied by a series of contributions describing the progress made on the SOXS instrument.
SOXS (Son of X-Shooter) will be the new medium resolution (R$sim$4500 for a 1 arcsec slit), high-efficiency, wide band spectrograph for the ESO-NTT telescope on La Silla. It will be able to cover simultaneously optical and NIR bands (350-2000nm) using two different arms and a pre-slit Common Path feeding system. SOXS will provide an unique facility to follow up any kind of transient event with the best possible response time in addition to high efficiency and availability. Furthermore, a Calibration Unit and an Acquisition Camera System with all the necessary relay optics will be connected to the Common Path sub-system. The Acquisition Camera, working in optical regime, will be primarily focused on target acquisition and secondary guiding, but will also provide an imaging mode for scientific photometry. In this work we give an overview of the Acquisition Camera System for SOXS with all the different functionalities. The optical and mechanical design of the system are also presented together with the preliminary performances in terms of optical quality, throughput, magnitude limits and photometric properties.
SOXS (Son Of X-Shooter) will be the new medium resolution (R~4500 for 1 slit), high-efficiency, wide band spectrograph for the ESO NTT at La Silla, optimized for classification and follow-up of transient events. SOXS will simultaneously cover UV optical and NIR bands (0.35-2.00 micron) using two different arms and a pre-slit Common Path feeding system. The instrument will be also equipped by a Calibration Unit and an Acquisition Camera (AC) System. In this paper we present the final opto-mechanical design for the AC System and we describe its development status. The project is currently in manufacturing and integration phases.
We give an overview of the baseline detector system for SAFARI, the prime focal-plane instrument on board the proposed space infrared observatory, SPICA. SAFARIs detectors are based on superconducting Transition Edge Sensors (TES) to provide the extreme sensitivity (dark NEP$le2times10^{-19}rm W/sqrt Hz$) needed to take advantage of SPICAs cold (<8 K) telescope. In order to read out the total of ~3500 detectors we use frequency domain multiplexing (FDM) with baseband feedback. In each multiplexing channel, a two-stage SQUID preamplifier reads out 160 detectors. We describe the detector system and discuss some of the considerations that informed its design.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا