Do you want to publish a course? Click here

Straight to the Facts: Learning Knowledge Base Retrieval for Factual Visual Question Answering

287   0   0.0 ( 0 )
 Added by Medhini Narasimhan
 Publication date 2018
and research's language is English




Ask ChatGPT about the research

Question answering is an important task for autonomous agents and virtual assistants alike and was shown to support the disabled in efficiently navigating an overwhelming environment. Many existing methods focus on observation-based questions, ignoring our ability to seamlessly combine observed content with general knowledge. To understand interactions with a knowledge base, a dataset has been introduced recently and keyword matching techniques were shown to yield compelling results despite being vulnerable to misconceptions due to synonyms and homographs. To address this issue, we develop a learning-based approach which goes straight to the facts via a learned embedding space. We demonstrate state-of-the-art results on the challenging recently introduced fact-based visual question answering dataset, outperforming competing methods by more than 5%.



rate research

Read More

90 - Chen Qu , Hamed Zamani , Liu Yang 2021
In this work, we address multi-modal information needs that contain text questions and images by focusing on passage retrieval for outside-knowledge visual question answering. This task requires access to outside knowledge, which in our case we define to be a large unstructured passage collection. We first conduct sparse retrieval with BM25 and study expanding the question with object names and image captions. We verify that visual clues play an important role and captions tend to be more informative than object names in sparse retrieval. We then construct a dual-encoder dense retriever, with the query encoder being LXMERT, a multi-modal pre-trained transformer. We further show that dense retrieval significantly outperforms sparse retrieval that uses object expansion. Moreover, dense retrieval matches the performance of sparse retrieval that leverages human-generated captions.
Knowledge base question answering (KBQA)is an important task in Natural Language Processing. Existing approaches face significant challenges including complex question understanding, necessity for reasoning, and lack of large end-to-end training datasets. In this work, we propose Neuro-Symbolic Question Answering (NSQA), a modular KBQA system, that leverages (1) Abstract Meaning Representation (AMR) parses for task-independent question understanding; (2) a simple yet effective graph transformation approach to convert AMR parses into candidate logical queries that are aligned to the KB; (3) a pipeline-based approach which integrates multiple, reusable modules that are trained specifically for their individual tasks (semantic parser, entity andrelationship linkers, and neuro-symbolic reasoner) and do not require end-to-end training data. NSQA achieves state-of-the-art performance on two prominent KBQA datasets based on DBpedia (QALD-9 and LC-QuAD1.0). Furthermore, our analysis emphasizes that AMR is a powerful tool for KBQA systems.
We propose a novel video understanding task by fusing knowledge-based and video question answering. First, we introduce KnowIT VQA, a video dataset with 24,282 human-generated question-answer pairs about a popular sitcom. The dataset combines visual, textual and temporal coherence reasoning together with knowledge-based questions, which need of the experience obtained from the viewing of the series to be answered. Second, we propose a video understanding model by combining the visual and textual video content with specific knowledge about the show. Our main findings are: (i) the incorporation of knowledge produces outstanding improvements for VQA in video, and (ii) the performance on KnowIT VQA still lags well behind human accuracy, indicating its usefulness for studying current video modelling limitations.
110 - Gaole He , Yunshi Lan , Jing Jiang 2021
Multi-hop Knowledge Base Question Answering (KBQA) aims to find the answer entities that are multiple hops away in the Knowledge Base (KB) from the entities in the question. A major challenge is the lack of supervision signals at intermediate steps. Therefore, multi-hop KBQA algorithms can only receive the feedback from the final answer, which makes the learning unstable or ineffective. To address this challenge, we propose a novel teacher-student approach for the multi-hop KBQA task. In our approach, the student network aims to find the correct answer to the query, while the teacher network tries to learn intermediate supervision signals for improving the reasoning capacity of the student network. The major novelty lies in the design of the teacher network, where we utilize both forward and backward reasoning to enhance the learning of intermediate entity distributions. By considering bidirectional reasoning, the teacher network can produce more reliable intermediate supervision signals, which can alleviate the issue of spurious reasoning. Extensive experiments on three benchmark datasets have demonstrated the effectiveness of our approach on the KBQA task. The code to reproduce our analysis is available at https://github.com/RichardHGL/WSDM2021_NSM.
Accurately answering a question about a given image requires combining observations with general knowledge. While this is effortless for humans, reasoning with general knowledge remains an algorithmic challenge. To advance research in this direction a novel `fact-based visual question answering (FVQA) task has been introduced recently along with a large set of curated facts which link two entities, i.e., two possible answers, via a relation. Given a question-image pair, deep network techniques have been employed to successively reduce the large set of facts until one of the two entities of the final remaining fact is predicted as the answer. We observe that a successive process which considers one fact at a time to form a local decision is sub-optimal. Instead, we develop an entity graph and use a graph convolutional network to `reason about the correct answer by jointly considering all entities. We show on the challenging FVQA dataset that this leads to an improvement in accuracy of around 7% compared to the state of the art.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا