Do you want to publish a course? Click here

Separating the scales in a compressible interstellar medium

63   0   0.0 ( 0 )
 Added by James Hollins
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

We apply Gaussian smoothing to obtain mean density, velocity, magnetic and energy density fields in simulations of the interstellar medium based on three-dimensional magnetohydrodynamic equations in a shearing box $1times1times2 , rm{kpc}$ in size. Unlike alternative averaging procedures, such as horizontal averaging, Gaussian smoothing retains the three-dimensional structure of the mean fields. Although Gaussian smoothing does not obey the Reynolds rules of averaging, physically meaningful central statistical moments are defined as suggested by Germano (1992). We discuss methods to identify an optimal smoothing scale $ell$ and the effects of this choice on the results. From spectral analysis of the magnetic, density and velocity fields, we find a suitable smoothing length for all three fields, of $ell approx 75 , rm{pc}$. We discuss the properties of third-order statistical moments in fluctuations of kinetic energy density in compressible flows and suggest their physical interpretation. The mean magnetic field, amplified by a mean-field dynamo, significantly alters the distribution of kinetic energy in space and between scales, reducing the magnitude of kinetic energy at intermediate scales. This intermediate-scale kinetic energy is a useful diagnostic of the importance of SN-driven outflows.



rate research

Read More

199 - Clare L. Dobbs 2014
By resimulating a region of a global disc simulation at higher resolution, we resolve and study the properties of molecular clouds with a range of masses from a few 100s M$_{odot}$ to $10^6$ M$_{odot}$. The purpose of our paper is twofold, i) to compare the ISM and GMCs at much higher resolution compared to previous global simulations, and ii) to investigate smaller clouds and characteristics such as the internal properties of GMCs which cannot be resolved in galactic simulations. We confirm the robustness of cloud properties seen in previous galactic simulations, and that these properties extend to lower mass clouds, though we caution that velocity dispersions may not be measured correctly in poorly resolved clouds. We find that the properties of the clouds and ISM are only weakly dependent on the details of local stellar feedback, although stellar feedback is important to produce realistic star formation rates and agreement with the Schmidt-Kennicutt relation. We study internal properties of GMCs resolved by $10^4-10^5$ particles. The clouds are highly structured, but we find clouds have a velocity dispersion radius relationship which overall agrees with the Larson relation. The GMCs show evidence of multiple episodes of star formation, with holes corresponding to previous feedback events and dense regions likely to imminently form stars. Our simulations show clearly long filaments, which are seen predominantly in the inter-arm regions, and shells.
64 - Dan Stinebring 2019
After a decade of great progress in understanding gas flow into, out of, and through the Milky Way, we are poised to merge observations with simulations to build a comprehensive picture of the multi-scale magnetized interstellar medium (ISM). These insights will also be crucial to four bold initiatives in the 2020s: detecting nanohertz gravitational waves with pulsar timing arrays (PTAs), decoding fast radio bursts (FRBs), cosmic B-mode detection, and imaging the Milky Ways black hole with the Event Horizon Telescope (EHT).
Turbulence is ubiquitous in the insterstellar medium and plays a major role in several processes such as the formation of dense structures and stars, the stability of molecular clouds, the amplification of magnetic fields, and the re-acceleration and diffusion of cosmic rays. Despite its importance, interstellar turbulence, alike turbulence in general, is far from being fully understood. In this review we present the basics of turbulence physics, focusing on the statistics of its structure and energy cascade. We explore the physics of compressible and incompressible turbulent flows, as well as magnetized cases. The most relevant observational techniques that provide quantitative insights of interstellar turbulence are also presented. We also discuss the main difficulties in developing a three-dimensional view of interstellar turbulence from these observations. Finally, we briefly present what could be the the main sources of turbulence in the interstellar medium.
The interstellar medium is the engine room for galactic evolution. While much is known about the conditions within the ISM, many important areas regarding the formation and evolution of the various phases of the ISM leading to star formation, and its role in important astrophysical processes, remain to be explained. This paper discusses several of the fundamental science problems, placing them in context with current activities and capabilities, as well as the future capabilities that are needed to progress them in the decade ahead. Australia has a vibrant research community working on the interstellar medium. This discussion gives particular emphasis to Australian involvement in furthering their work, as part of the wider international endeavour. The particular science programs that are outlined in this White Paper include the formation of molecular clouds, the ISM of the Galactic nucleus, the origin of gamma-rays and cosmic rays, high mass star and cluster formation, the dense molecular medium, galaxy evolution and the diffuse atomic medium, supernova remnants, the role of magnetism and turbulence in the Galactic ecology and complex organic molecules in space.
Cyanogen (NCCN) is the simplest member of the dicyanopolyynes group, and has been proposed as a major source of the CN radical observed in cometary atmospheres. Although not detected through its rotational spectrum in the cold interstellar medium, this very stable species is supposed to be very abundant. The chemistry of cyanogen in the cold interstellar medium can be investigated through its metastable isomer, CNCN (isocyanogen). Its formation may provide a clue on the widely abundant CN radical observed in cometary atmospheres. We performed an unbiased spectral survey of the L1544 proto-typical prestellar core, using the IRAM-30m and have analysed, for this paper, the nitrogen chemistry that leads to the formation of isocyanogen. We report on the first detection of CNCN, NCCNH+, C3N, CH3CN, C2H3CN, and H2CN in L1544. We built a detailed chemical network for NCCN/CNCN/HC2N2+ involving all the nitrogen bearing species detected (CN, HCN, HNC, C3N, CNCN, CH3CN, CH2CN, HCCNC, HC3N, HNC3, H2CN, C2H3CN, HCNH+, HC3NH+) and the upper limits on C4N, C2N. The main cyanogen production pathways considered in the network are the CN + HNC and N + C3N reactions. The comparison between the observations of the nitrogen bearing species and the predictions from the chemical modelling shows a very good agreement, taking into account the new chemical network. The expected cyanogen abundance is greater than the isocyanogen abundance by a factor of 100. Although cyanogen cannot be detected through its rotational spectrum, the chemical modelling predicts that it should be abundant in the gas phase and hence might be traced through the detection of isocyanogen. It is however expected to have a very low abundance on the grain surfaces compared to HCN.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا