Do you want to publish a course? Click here

On the origin of in-gap states in homogeneously disordered ultrathin films. MoC case

185   0   0.0 ( 0 )
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

Many disordered superconducting films exhibit smeared tunneling spectra with evident in-gap states. We demonstrated that the tunneling density of states in ultrathin MoC films is gapless and can be described by the Dynes version of the BCS density of states with a strong broadening parameter Gamma accounting for the suppression of coherence peaks and increased in-gap states. The thinner the film, the lower the Tc and the superconducting energy gap Delta and the larger the Gamma. MoC films of 3 nm thickness deposited simultaneously on silicon and sapphire substrates reveal very similar scalar disorder, evidenced by the equal sheet resistance, but exhibit different superconducting characteristics of Tc, Delta and Gamma, suggesting that pair breaking responsible for the dissipation channel and the suppression of superconductivity originates on the film-substrate interface. It indicates that sapphire is a stronger pair breaker. Interface pair breaking can be operative in other cases as well.



rate research

Read More

A directed narrow jet of an organo-metallic gas containing a heavy metal can be decomposed by an accelerated beam of gallium ions, leaving behind a track made up of a complex residue of gallium, heavy metal and carbon. The process is highly controllable and in certain cases, the residue has remarkable superconducting properties, like an upper critical field ($H_{c2} sim 10~{rm T} $) that is higher than the paramagnetic limit. Werthamer-Helfand-Hohenberg (WHH) analysis shows the presence of moderate spin-orbit (SO) scattering and a Maki parameter compatible with unconventional (e.g., FFLO-like) superconducting states. Using a spatially resolved mass spectrometric technique (Atomic probe tomography), we show that the possible origin of the SO effects lies in the formation of nano-crystalline tungsten carbide (WC) with a possible non-centrosymmetric crystal structure. We also show that when Ga is distributed on the surface of nano-crystallite WC, the sp-orbitals of Ga give rise to bands with a significant density of states near the Fermi energy. The superconductor is in the dirty limit where the mean free path ($l$) is much smaller than the zero temperature coherence length, i.e., $lllxi_{0}~{approx}~5{~rm nm}$. Low-temperature magnetotransport with {em in-situ} rotation of the sample in a magnetic field shows clear anisotropic effects that weaken as the width of the tracks are increased from $sim~100{~rm nm}$ to $sim~1{~ {mu}rm m}$ [Phys. Rev. B 103, L020504, 2021]. The combination of the transition temperature ($T_c~{approx}~5~ {rm K}$), the critical field $H_{c2} geq 10~ {rm T}$ and nanometer-scale patternability of these tracks make them an attractive component for engineered mesoscopic structures.
We report an experimental study of quench condensed ($2Kle T le 15K$) disordered ultrathin films of {rm Bi} where localisation effects and superconductivity compete. Experiments are done with different substrates and/or different underlayers. Quasi-free standing films of {rm Bi}, prepared by quenching {rm Bi} vapours onto solid {rm Xe}, are also studied. The results show a dependence of the transport properties both on the dielectric constant of the substrate/underlayer as well as the temperature of quench condensation. RHEED studies indicate that quantum size effects are important in these systems. In this paper, we try to correlate the structure of the films to the transport properties obtained.
In most superconductors the transition to the superconducting state is driven by the binding of electrons into Cooper-pairs. The condensation of these pairs into a single, phase coherent, quantum state takes place concomitantly with their formation at the transition temperature, $T_c$. A different scenario occurs in some disordered, amorphous, superconductors: Instead of a pairing-driven transition, incoherent Cooper pairs first pre-form above $T_c$, causing the opening of a pseudogap, and then, at $T_c$, condense into the phase coherent superconducting state. Such a two-step scenario implies the existence of a new energy scale, $Delta_{c}$, driving the collective superconducting transition of the preformed pairs. Here we unveil this energy scale by means of Andreev spectroscopy in superconducting thin films of amorphous indium oxide. We observe two Andreev conductance peaks at $pm Delta_{c}$ that develop only below $T_c$ and for highly disordered films on the verge of the transition to insulator. Our findings demonstrate that amorphous superconducting films provide prototypical disordered quantum systems to explore the collective superfluid transition of preformed Cooper-pairs pairs.
We report the evolution of superconducting properties as a function of disorder in homogeneously disordered epitaxial NbN thin films grown on (100) MgO substrates, studied through a combination of electrical transport, Hall Effect and tunneling measurements. The thickness of all our films are >50nm much larger than the coherence length ~5nm. The effective disorder in different films encompasses a large range, with the Ioffe-Regel parameter varying in the range kFl~1.38-8.77. Tunneling measurements on films with different disorder reveals that for films with large disorder the bulk superconducting transition temperature (Tc) is not associated with a vanishing of the superconducting energy gap, but rather a large broadening of the superconducting density of states. Our results provide strong evidence of the loss of superconductivity via phase-fluctuations in a disordered s-wave superconductor.
We have measured directly the thermal conductance between electrons and phonons in ultra-thin Hf and Ti films at millikelvin temperatures. The experimental data indicate that electron-phonon coupling in these films is significantly suppressed by disorder. The electron cooling time $tau_epsilon$ follows the $T^{-4}$-dependence with a record-long value $tau_epsilon=25ms$ at $T=0.04K$. The hot-electron detectors of far-infrared radiation, fabricated from such films, are expected to have a very high sensitivity. The noise equivalent power of a detector with the area $1mum^2$ would be $(2-3)10^{-20}W/Hz^{1/2}$, which is two orders of magnitude smaller than that of the state-of-the-art bolometers.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا