No Arabic abstract
Overcoming the diffraction limit to achieve high optical resolution is one of the main challenges in the fields of plasmonics, nanooptics and nanophotonics. In this work, we introduce novel plasmonic structures consisting of nanoantennas (nanoprisms, single bowtie nanoantennas and double bowtie nanoantennas) integrated in the center of ring diffraction gratings. Propagating surface plasmon polaritons (SPPs) are generated by the ring grating and coupled with localized surface plasmons (LSPs) at the nanoantennas exciting emitters placed in their gap. SPPs are widely used for optical waveguiding but provide low resolution due to their weak spatial confinement. Oppositely, LSPs provide excellent sub-wavelength confinement but induce large losses. The phenomenon of SPP-LSP coupling witnessed in our structures allows achieving more precise focusing at the nanoscale, causing an increase in the fluorescence emission of the emitters. FDTD simulations as well as experimental fabrication and optical characterization results are presented to study plasmon-emitter coupling between an ensemble of dye molecules and our integrated plasmonic structures. A comparison is given to highlight the importance of each structure on the photoluminescence and radiative decay enhancement of the molecules.
Plasmon-emitter interactions are of paramount importance in modern nanoplasmonics and are generally maximal at short emitter-surface separations. However, when the separation falls below 10-20 nm, the classical theory progressively deteriorates due to its neglect of quantum mechanical effects such as nonlocality, electronic spill-out, and Landau damping. Here, we show how this neglect can be remedied by presenting a unified theoretical treatment of mesoscopic electrodynamics grounded on the framework of Feibelman $d$-parameters. Crucially, our technique naturally incorporates nonclassical resonance shifts and surface-enabled Landau damping - a nonlocal damping effect - which have a dramatic impact on the amplitude and spectral distribution of plasmon-emitter interactions. We consider a broad array of plasmon-emitter interactions ranging from dipolar and multipolar spontaneous emission enhancement, to plasmon-assisted energy transfer and enhancement of two-photon transitions. The formalism presented here gives a complete account of both plasmons and plasmon-emitter interactions at the nanoscale, constituting a simple yet rigorous and general platform to incorporate nonclassical effects in plasmon-empowered nanophotonic phenomena.
We study instability of plasmons in a dual-grating-gate graphene field-effect transistor induced by dc current injection using self-consistent simulations with the Boltzmann equation. With only the acoustic-phonon-limited electron scattering, it is demonstrated that a total growth rate of the plasmon instability, with the terahertz/mid-infrared range of the frequency, can exceed $4times10^{12}$ s$^{-1}$ at room temperature, which is an order of magnitude larger than in two-dimensional electron gases based on usual semiconductors. By Comparing the simulation results with existing theory, it is revealed that the giant total growth rate originates from simulataneous occurence of the so-called Dyakonov-Shur and Ryzhii-Satou-Shur instabilities.
Epitaxial graphene mesas and ribbons are investigated using terahertz (THz) nearfield microscopy to probe surface plasmon excitation and THz transmission properties on the sub-wavelength scale. The THz near-field images show variation of graphene properties on a scale smaller than the wavelength, and excitation of THz surface waves occurring at graphene edges, similar to that observed at metallic edges. The Fresnel reflection at the substrate SiC/air interface is also found to be altered by the presence of graphene ribbon arrays, leading to either reduced or enhanced transmission of the THz wave depending on the wave polarization and the ribbon width.
Interactions between localized plasmons in proximal nanostructures is a well-studied phenomenon. Here we explore plasmon plasmon interactions in connected extended systems. Such systems can now be easily produced using graphene. Specifically we employ the finite element method to study such interactions in graphene nanoribbon arrays with a periodically modulated electrochemical potential or number of layers. We find a rich variation in the resulting plasmonic resonances depending on the dimensions and the electrochemical potentials (doping) of the nanoribbon segments and the involvement of transverse and longitudinal plasmon interactions. Unlike predictions based of the well-known orbital hybridization model, the energies of the resulting hybrid plasmonic resonances of the extended system can lie between the energies of the plasmons of the individual components. The results demonstrate the wide range tunability of the graphene plasmons and can help to design structures with desired spectra, which can be used to enhance optical fields in the infrared region of the electromagnetic spectrum.
We study the spectra and damping of surface plasmon-polaritons in double graphene layer structures. It is shown that application of bias voltage between layers shifts the edge of plasmon absorption associated with the interband transitions. This effect could be used in efficient plasmonic modulators. We reveal the influence of spatial dispersion of conductivity on plasmonic spectra and show that it results in the shift of cutoff frequency to the higher values.