Do you want to publish a course? Click here

Plasmon coupling in extended structures: Graphene superlattice nanoribbon arrays

210   0   0.0 ( 0 )
 Added by Daniel Rodrigo
 Publication date 2015
  fields Physics
and research's language is English




Ask ChatGPT about the research

Interactions between localized plasmons in proximal nanostructures is a well-studied phenomenon. Here we explore plasmon plasmon interactions in connected extended systems. Such systems can now be easily produced using graphene. Specifically we employ the finite element method to study such interactions in graphene nanoribbon arrays with a periodically modulated electrochemical potential or number of layers. We find a rich variation in the resulting plasmonic resonances depending on the dimensions and the electrochemical potentials (doping) of the nanoribbon segments and the involvement of transverse and longitudinal plasmon interactions. Unlike predictions based of the well-known orbital hybridization model, the energies of the resulting hybrid plasmonic resonances of the extended system can lie between the energies of the plasmons of the individual components. The results demonstrate the wide range tunability of the graphene plasmons and can help to design structures with desired spectra, which can be used to enhance optical fields in the infrared region of the electromagnetic spectrum.



rate research

Read More

Based on first-principles calculations we predict that periodically repeated junctions of armchair graphene nanoribbons of different widths form superlattice structures. In these superlattice heterostructures the width and the energy gap are modulated in real space and specific states are confined in certain segments. Orientation of constituent nanoribbons, their width and length, the symmetry of the junction are the structural parameters to engineer electronic properties of these quantum structures. Not only the size modulation, but also composition modulation, such as periodically repeated, commensurate heterojunctions of BN and graphene honeycomb nanoribbons result in a multiple quantum well structure. We showed that these graphene based quantum structures can introduce novel concepts to design nanodevices.
Epitaxial graphene mesas and ribbons are investigated using terahertz (THz) nearfield microscopy to probe surface plasmon excitation and THz transmission properties on the sub-wavelength scale. The THz near-field images show variation of graphene properties on a scale smaller than the wavelength, and excitation of THz surface waves occurring at graphene edges, similar to that observed at metallic edges. The Fresnel reflection at the substrate SiC/air interface is also found to be altered by the presence of graphene ribbon arrays, leading to either reduced or enhanced transmission of the THz wave depending on the wave polarization and the ribbon width.
We study the spectra and damping of surface plasmon-polaritons in double graphene layer structures. It is shown that application of bias voltage between layers shifts the edge of plasmon absorption associated with the interband transitions. This effect could be used in efficient plasmonic modulators. We reveal the influence of spatial dispersion of conductivity on plasmonic spectra and show that it results in the shift of cutoff frequency to the higher values.
The dispersion relation of surface plasmon polaritons in graphene that includes optical losses is often obtained for complex wave vectors while the frequencies are assumed to be real. This approach, however, is not suitable for describing the temporal dynamics of optical excitations and the spectral properties of graphene. Here, we propose an alternative approach that calculates the dispersion relation in the complex frequency and real wave vector space. This approach provides a clearer insight into the optical properties of a graphene layer and allows us to find the surface plasmon modes of a graphene sheet in the full frequency range, thus removing the earlier reported limitation (1.667 < $hbaromega/mu$ < 2) for the transverse-electric mode. We further develop a simple analytic approximation which accurately describes the dispersion of the surface plasmon polariton modes in graphene. Using this approximation, we show that transverse-electric surface plasmon polaritons propagate along the graphene sheet without losses even at finite temperature.
Resonance diffraction in the periodic array of graphene micro-ribbons is theoretically studied following a recent experiment [L. Ju et al, Nature Nanotech. 6, 630 (2011)]. Systematic studies over a wide range of parameters are presented. It is shown that a much richer resonant picture would be observable for higher relaxation times of charge carriers: more resonances appear and transmission can be totally suppressed. The comparison with the absorption cross-section of a single ribbon shows that the resonant features of the periodic array are associated with leaky plasmonic modes. The longest-wavelength resonance provides the highest visibility of the transmission dip and has the strongest spectral shift and broadening with respect to the single-ribbon resonance, due to collective effects.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا