No Arabic abstract
Context: The protostellar envelopes, outflow and large-scale chemistry of Class~0 and Class~I objects have been well-studied, but while previous works have hinted at or found a few Keplerian disks at the Class~0 stage, it remains to be seen if their presence in this early stage is the norm. Likewise, while complex organics have been detected toward some Class~0 objects, their distribution is unknown as they could reside in the hottest parts of the envelope, in the emerging disk itself or in other components of the protostellar system, such as shocked regions related to outflows. Aims: In this work, we aim to address two related issues regarding protostars: when rotationally supported disks form around deeply embedded protostars and where complex organic molecules reside in such objects. Methods: We observed the deeply embedded protostar, L483, using Atacama Large Millimeter/submillimeter Array (ALMA) Band~7 data from Cycles~1 and 3 with a high angular resolution down to $sim$~0.1$^{primeprime}$ (20~au) scales. Results: We find that the kinematics of CS~$J=7$--$6$ and H$^{13}$CN~$J=4$--$3$ are best fitted by the velocity profile from infall under conservation of angular momentum and not by a Keplerian profile. The spatial extents of the observed complex organics are consistent with an estimated ice sublimation radius of the envelope at $sim$~50~au, suggesting that the complex organics exist in the hot corino of L483. Conclusions: We find that L483 does not harbor a Keplerian disk down to at least $15$~au in radius. Instead, the innermost regions of L483 are undergoing a rotating collapse. This result highlights that some Class~0 objects contain only very small disks, or none at all, with the complex organic chemistry taking place on scales inside the hot corino of the envelope, in a region larger than the emerging disk.
Sub-arcsecond images of the rotational line emission of CS and SO have been obtained toward the Class I protostar IRAS 04365$+$2535 in TMC-1A with ALMA. A compact component around the protostar is clearly detected in the CS and SO emission. The velocity structure of the compact component of CS reveals infalling-rotating motion conserving the angular momentum. It is well explained by a ballistic model of an infalling-rotating envelope with the radius of the centrifugal barrier (a half of the centrifugal radius) of 50 AU, although the distribution of the infalling gas is asymmetric around the protostar. The distribution of SO is mostly concentrated around the radius of the centrifugal barrier of the simple model. Thus a drastic change in chemical composition of the gas infalling onto the protostar is found to occur at a 50 AU scale probably due to accretion shocks, demonstrating that the infalling material is significantly processed before being delivered into the disk.
We present a characterization of the protostar embedded within the BHR7 dark cloud, based on both photometric measurements from the near-infrared to millimeter and interferometric continuum and molecular line observations at millimeter wavelengths. We find that this protostar is a Class 0 system, the youngest class of protostars, measuring its bolometric temperature to be 50.5~K, with a bolometric luminosity of 9.3~L$_{odot}$. The near-infrared and textit{Spitzer} imaging show a prominent dark lane from dust extinction separating clear bipolar outflow cavities. Observations of $^{13}$CO ($J=2rightarrow1$), C$^{18}$O ($J=2rightarrow1$), and other molecular lines with the Submillimeter Array (SMA) exhibit a clear rotation signature on scales $<$1300~AU. The rotation can be traced to an inner radius of $sim$170~AU and the rotation curve is consistent with an R$^{-1}$ profile, implying that angular momentum is being conserved. Observations of the 1.3~mm dust continuum with the SMA reveal a resolved continuum source, extended in the direction of the dark lane, orthogonal to the outflow. The deconvolved size of the continuum indicates a radius of $sim$100~AU for the continuum source at the assumed distance of 400~pc. The visibility amplitude profile of the continuum emission cannot be reproduced by an envelope alone and needs a compact component. Thus, we posit that the resolved continuum source could be tracing a Keplerian disk in this very young system. If we assume that the continuum radius traces a Keplerian disk (R$sim$120~AU) the observed rotation profile is consistent with a protostar mass of 1.0~$M_{odot}$.
We present the results of observations toward a low-mass Class-0/I protostar, [BHB2007]#11 (afterwards B59#11) at the nearby (d=130 pc) star forming region, Barnard 59 (B59) in the Pipe Nebula with the Atacama Submillimeter Telescope Experiment (ASTE) 10 m telescope (~22 resolution) in CO(3--2), HCO+, H13CO+(4--3), and 1.1 mm dust-continuum emissions. We also show Submillimeter Array (SMA) data in 12CO, 13CO, C18O(2--1), and 1.3 mm dust-continuum emissions with ~5 resolution. From ASTE CO(3--2) observations, we found that B59#11 is blowing a collimated outflow whose axis lies almost on the plane of the sky. The outflow traces well a cavity-like structure seen in the 1.1 mm dust-continuum emission. The results of SMA 13CO and C18O(2--1) observations have revealed that a compact and elongated structure of dense gas is associated with B59#11, which is oriented perpendicular to the outflow axis. There is a compact dust condensation with a size of 350x180 AU seen in the SMA 1.3 mm continuum map, and the direction of its major axis is almost the same as that of the dense gas elongation. The distributions of 13CO and C18O emission also show the velocity gradients along their major axes, which are considered to arise from the envelope/disk rotation. From the detailed analysis of the SMA data, we infer that B59#11 is surrounded by a Keplerian disk with a size of less than 350 AU. In addition, the SMA CO(2--1) image shows a velocity gradient in the outflow along the same direction as that of the dense gas rotation. We suggest that this velocity gradient shows a rotation of the outflow.
We have resolved for the first time the radial and vertical structure of the almost edge-on envelope/disk system of the low-mass Class 0 protostar L1527. For that, we have used ALMA observations with a spatial resolution of 0.25$^{primeprime}$$times$0.13$^{primeprime}$ and 0.37$^{primeprime}$$times$0.23$^{primeprime}$ at 0.8 mm and 1.2 mm, respectively. The L1527 dust continuum emission has a deconvolved size of 78 au $times$ 21 au, and shows a flared disk-like structure. A thin infalling-rotating envelope is seen in the CCH emission outward of about 150 au, and its thickness is increased by a factor of 2 inward of it. This radius lies between the centrifugal radius (200 au) and the centrifugal barrier of the infalling-rotating envelope (100 au). The gas stagnates in front of the centrifugal barrier and moves toward vertical directions. SO emission is concentrated around and inside the centrifugal barrier. The rotation speed of the SO emitting gas is found to be decelerated around the centrifugal barrier. A part of the angular momentum could be extracted by the gas which moves away from the mid-plane around the centrifugal barrier. If this is the case, the centrifugal barrier would be related to the launching mechanism of low velocity outflows, such as disk winds.
The bipolar outflow associated with the Class 0 low-mass protostellar source (IRAS 18148-0440) in L483 has been studied in the CCH and CS line emission at 245 and 262 GHz, respectively. Sub-arcsecond resolution observations of these lines have been conducted with ALMA. Structures and kinematics of the outflow cavity wall are investigated in the CS line, and are analyzed by using a parabolic model of an outflow. We constrain the inclination angle of the outflow to be from 75 degree to 90 degree, i.e. the outflow is blowing almost perpendicular to the line of sight. Comparing the outflow parameters derived from the model analysis with those of other sources, we confirm that the opening angle of the outflow and the gas velocity on its cavity wall correlate with the dynamical timescale of the outflows. Moreover, a hint of a rotating motion of the outflow cavity wall is found. Although the rotation motion is marginal, the specific angular momentum of the gas on the outflow cavity wall is evaluated to be comparable to or twice that of the infalling-rotating envelope of L483.