Do you want to publish a course? Click here

Stable and manipulable Bloch point

256   0   0.0 ( 0 )
 Added by Marijan Beg
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

The prediction of magnetic skyrmions being used to change the way we store and process data has led to materials with Dzyaloshinskii-Moriya interaction coming into the focus of intensive research. So far, studies have looked mostly at magnetic systems composed of materials with single chirality. In a search for potential future spintronic devices, combination of materials with different chirality into a single system may represent an important new avenue for research. Using finite element micromagnetic simulations, we study an FeGe disk with two layers of different chirality. We show that for particular thicknesses of layers, a stable Bloch point emerges at the interface between two layers. In addition, we demonstrate that the system undergoes hysteretic behaviour and that two different types of Bloch point exist. These `head-to-head and `tail-to-tail Bloch point configurations can, with the application of an external magnetic field, be switched between. Finally, by investigating the time evolution of the magnetisation field, we reveal the creation mechanism of the Bloch point. Our results introduce a stable and manipulable Bloch point to the collection of particle-like state candidates for the development of future spintronic devices.



rate research

Read More

Cylindrical nanowires made of soft magnetic materials, in contrast to thin strips, may host domain walls of two distinct topologies. Unexpectedly, we evidence experimentally the dynamic transformation of topology upon wall motion above a field threshold. Micromagnetic simulations highlight the underlying precessional dynamics for one way of the transformation, involving the nucleation of a Bloch-point singularity, however, fail to reproduce the reverse process. This rare discrepancy between micromagnetic simulations and experiments raises fascinating questions in material and computer science.
We resolve the domain-wall structure of the model antiferromagnet $text{Cr}_2text{O}_3$ using nanoscale scanning diamond magnetometry and second-harmonic-generation microscopy. We find that the 180$^circ$ domain walls are predominantly Bloch-like, and can co-exist with Neel walls in crystals with significant in-plane anisotropy. In the latter case, Neel walls that run perpendicular to a magnetic easy axis acquire a well-defined chirality. We further report quantitative measurement of the domain-wall width and surface magnetization. Our results provide fundamental input and an experimental methodology for the understanding of domain walls in pure, intrinsic antiferromagnets, which is relevant to achieve electrical control of domain-wall motion in antiferromagnetic compounds.
Various properties of the energy band structures (electronic, phonon, etc.), including systematic band degeneracy, sticking and extremes, following from the full line group symmetry of the single-wall carbon nanotubes are established. The complete set of quantum numbers consists of quasi momenta (angular and linear or helical) and parities with respect to the z-reversal symmetries and, for achiral tubes, the vertical plane. The assignation of the electronic bands is performed, and the generalized Bloch symmetry adapted eigen functions are derived. The most important physical tensors are characterized by the same set of quantum numbers. All this enables application of the presented exhaustive selection rules. The results are discussed by some examples, e.g. allowed interband transitions, conductivity, Raman tensor, etc.
114 - K. C. Erb , J. Hlinka 2019
The 212 species of structural phase transitions which break macroscopic symmetry are analyzed with respect to the occurrence of time-reversal invariant vector and bidirector order parameters. The possibility of discerning the orientational domain states of the low-symmetry phase by these `vectorlike physical properties has been derived using a computer algorithm exploiting the concept of polar, axial, chiral and neutral dipoles. It is argued that for species 32 > 3, 422 > 4 and 622 > 6, Bogdanov-Yablonskii phenomenological theory for a ferromagnetic Bloch Skyrmions applies also to the ferroelectric Bloch Skyrmions. In these fully-ferroelectric and nonferroelastic species, the Ginzburg Landau functional allows a pseudo-Lifshitz invariant of chiral bidirector symmetry, analogous to the chiral Dzyaloshinskii-Moria term assumed in magnetic Bloch Skyrmion theory.
In a pristine monolayer graphene subjected to a constant electric field along the layer, the Bloch oscillation of an electron is studied in a simple and efficient way. By using the electronic dispersion relation, the formula of a semi-classical velocity is derived analytically, and then many aspects of Bloch oscillation, such as its frequency, amplitude, as well as the direction of the oscillation, are investigated. It is interesting to find that the electric field affects the component of motion, which is non-collinear with electric field, and leads the particle to be accelerated or oscillated in another component.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا