No Arabic abstract
We for the first time report the truncated diffraction with a triangular aperture of the SU(2) geometric modes and propose a method to detect the complicated orbital angular momentum (OAM) of an SU(2) wave-packet, to the best of our knowledge. As a special vortex beam, a nonplanar SU(2) mode carrying special intensity and OAM distributions brings exotic patterns in truncated diffraction lattice. A meshy structure is unveiled therein by adjusting the illuminated aperture in vicinity of the partial OAM regions, which can be elaborately used to evaluate the partial topological charge and OAM of an SU(2) wave-packet by counting the dark holes in the mesh. Moreover, through controlling the size and position of the aperture at the center region, the truncated triangular lattice can be close to the classical spot-array lattice for measuring the center OAM. These effects being fully validated by theoretical simulations greatly extend the versatility of topological structures detection of special beams.
Orbital angular momentum of light is a core feature in photonics. Its confinement to surfaces using plasmonics has unlocked many phenomena and potential applications. Here we introduce the reflection from structural boundaries as a new degree of freedom to generate and control plasmonic orbital angular momentum. We experimentally demonstrate plasmonic vortex cavities, generating a succession of vortex pulses with increasing topological charge as a function of time. We track the spatio-temporal dynamics of these angularly decelerating plasmon pulse train within the cavities for over 300 femtoseconds using time-resolved Photoemission Electron Microscopy, showing that the angular momentum grows by multiples of the chiral order of the cavity. The introduction of this degree of freedom to tame orbital angular momentum delivered by plasmonic vortices, could miniaturize pump-probe-like quantum initialization schemes, increase the torque exerted by plasmonic tweezers and potentially achieve vortex lattice cavities with dynamically evolving topology.
We reveal for the first time a direct relationship between the diffraction of optical beams and their carrying orbital angular momentum (OAM). We experimentally demonstrate a novel phenomenon that the anisotropic diffraction can be induced by the OAM, predicted by us [Opt. Express, textbf{26}, 8084 (2018)], via the propagations of the elliptic beams with the OAM in linearly and both-linearly-and-nonlinearly isotropic media, respectively. In the former case, when its carrying OAM equals the so-called critical OAM, the spiraling elliptic Gaussian beam (fundamental eigenmode) is observed in the free space, where only the eigenmode with cylindrical-symmetry is supposed to exist for the beam without the OAM. In the latter case, the spiraling elliptic soliton, predicted by Desyatnikov et al. [Phys. Rev. Lett, textbf{104}, 053902 (2010)], is observed to stably propagate in a cylindrical lead glass. The power-controllable rotation of such an elliptic beam is also experimentally demonstrated.
We theoretically and experimentally investigated transformations of vortex beams subjected to sector perturbations in the form of hard-edged aperture. The transformations of the vortex spectra, the orbital angular momentum, and the informational entropy of the perturbed beam were studied. We found that relatively small angular sector perturbations have almost no effect on OAM, although the informational entropy is rapidly increasing due to the birth of new optical vortices caused by diffraction by diaphragm edges. At large perturbation angles, the uncertainty principle between the angle and OAM involves vortices, with both positive and negative topological charges, so that the OAM decreases to almost zero, and the entropy increases sharply.
Understanding the near-field electromagnetic interactions that produce optical orbital angular momentum (OAM) is central to the integration of twisted light into nanotechnology. Here, we examine the cathodoluminescence (CL) of plasmonic vortices carrying OAM generated in spiral nanostructures through scanning transmission electron microscopy (STEM). The nanospiral geometry defines the photonic local density of states (LDOS) sampled by STEM-CL, which provides access to the phase and amplitude of the plasmonic vortex with nanometer spatial and meV spectral resolution. We map the full spectral dispersion of the plasmonic vortex in the spiral structure and examine the effects of increasing topological charge on the plasmon phase and amplitude in the detected CL signal. The vortex is mapped in CL over a broad spectral range, and deviations between the predicted and detected positions of near-field optical signatures of as much as 5 per cent are observed. Finally, enhanced luminescence is observed from concentric spirals of like handedness compared to that from concentric spirals of opposite handedness, indicating the potential to couple plasmonic vortices to chiral nanostructures for sensitive detection and manipulation of optical OAM.
Today, it is well known that light possesses a linear momentum which is along the propagation direction. Besides, scientists also discovered that light can possess an angular momentum (AM), a spin angular momentum (SAM) associated with circular polarization and an orbital angular momentum (OAM) owing to the azimuthally dependent phase. Even though such angular momenta are longitudinal in general, a SAM transverse to the propagation has opened up a variety of key applications [1]. In contrast, investigations of the transverse OAM are quite rare due to its complex nature. Here we demonstrate a simple method to generate a three dimensional (3D) optical wave packet with a controllable purely transverse OAM. Such a wave packet is a spatiotemporal (ST) vortex, which resembles an advancing cyclone, with optical energy flowing in the spatial and temporal dimension. Contrary to the transverse SAM, the magnitude of the transverse OAM carried by the photonic cyclone is scalable to a larger value by simple adjustments. Since the ST vortex carries a controllable OAM in the unique transverse dimension, it has a strong potential for novel applications that may not be possible otherwise. The scheme reported here can be readily adapted for the other spectra regime and different wave fields, opening tremendous opportunities for the study and applications of ST vortex in much broader scopes.