No Arabic abstract
In this paper, we study the problem of massless particle creation in a flat, homogeneous and isotropic universe in the framework of $f(G)$ gravity. The Bogolyubov coefficients are calculated for the accelerating power-law solutions of the model in a matter dominated universe, from which the total number of created particle per unit volume of space can be obtained. It is proved that the total particle density always has a finite value. Therefore, the Bogolyubov transformations are well-defined and the Hilbert spaces spanned by the vacuum states at different times are unitarily equivalent. We find that the particles with small values of the mode $k$ are produced in the past and particles with large values of $k$ are produced only in the future. The negative pressure resulting from the gravitational particle creation is also determined. It is then argued that this pressure even in the presence of energy density and thermal pressure may affect significantly the cosmic expansion.
Modified gravity is one of the most promising candidates for explaining the current accelerating expansion of the Universe, and even its unification with the inflationary epoch. Nevertheless, the wide range of models capable to explain the phenomena of dark energy, imposes that current research focuses on a more precise study of the possible effects of modified gravity may have on both cosmological and local levels. In this paper, we focus on the analysis of a type of modified gravity, the so-called f(R,G) gravity and we perform a deep analysis on the stability of important cosmological solutions. This not only can help to constrain the form of the gravitational action, but also facilitate a better understanding of the behavior of the perturbations in this class of higher order theories of gravity, which will lead to a more precise analysis of the full spectrum of cosmological perturbations in future.
In this work, we study the possibility of generalizing solutions of regular black holes with an electric charge, constructed in general relativity, for the $f(G)$ theory, where $G$ is the Gauss-Bonnet invariant. This type of solution arises due to the coupling between gravitational theory and nonlinear electrodynamics. We construct the formalism in terms of a mass function and it results in different gravitational and electromagnetic theories for which mass function. The electric field of these solutions are always regular and the strong energy condition is violated in some region inside the event horizon. For some solutions, we get an analytical form for the $f(G)$ function. Imposing the limit of some constant going to zero in the $f(G)$ function we recovered the linear case, making the general relativity a particular case.
In this work by using a numerical analysis, we investigate in a quantitative way the late-time dynamics of scalar coupled $f(R,mathcal{G})$ gravity. Particularly, we consider a Gauss-Bonnet term coupled to the scalar field coupling function $xi(phi)$, and we study three types of models, one with $f(R)$ terms that are known to provide a viable late-time phenomenology, and two Einstein-Gauss-Bonnet types of models. Our aim is to write the Friedmann equation in terms of appropriate statefinder quantities frequently used in the literature, and we numerically solve it by using physically motivated initial conditions. In the case that $f(R)$ gravity terms are present, the contribution of the Gauss-Bonnet related terms is minor, as we actually expected. This result is robust against changes in the initial conditions of the scalar field, and the reason is the dominating parts of the $f(R)$ gravity sector at late times. In the Einstein-Gauss-Bonnet type of models, we examine two distinct scenarios, firstly by choosing freely the scalar potential and the scalar Gauss-Bonnet coupling $xi(phi)$, in which case the resulting phenomenology is compatible with the latest Planck data and mimics the $Lambda$-Cold-Dark-Matter model. In the second case, since there is no fundamental particle physics reason for the graviton to change its mass, we assume that primordially the tensor perturbations propagate with the speed equal to that of lights, and thus this constraint restricts the functional form of the scalar coupling function $xi(phi)$, which must satisfy the differential equation $ddot{xi}=Hdot{xi}$.
The thermodynamical study of the universe allow particle production in modified $f(T)$ ($T$ is the torsion scalar) theory of gravity within a flat FLRW framework for line element. The torsion scalar $T$ plays the same role as the Ricci scalar $R$ in the modified theories of gravity. We derived the $f(T)$ gravity models by taking $f(T)$ as the sum of $T$ and an arbitrary function of $T$ with three different arbitrary function. We observe that the particle production describes the accelerated expansion of the universe without a cosmological constant or any unknown quintessence component. Also, we discussed the supplementary pressure, particle number density and particle production rate for three cases.
Dynamics and collapse of collisionless self-gravitating systems is described by the coupled collisionless Boltzmann and Poisson equations derived from $f(R)$-gravity in the weak field approximation. Specifically, we describe a system at equilibrium by a time-independent distribution function $f_0(x,v)$ and two potentials $Phi_0(x)$ and $Psi_0(x)$ solutions of the modified Poisson and collisionless Boltzmann equations. Considering a small perturbation from the equilibrium and linearizing the field equations, it can be obtained a dispersion relation. A dispersion equation is achieved for neutral dust-particle systems where a generalized Jeans wave-number is obtained. This analysis gives rise to unstable modes not present in the standard Jeans analysis (derived assuming Newtonian gravity as weak filed limit of $f(R)=R$). In this perspective, we discuss several self-gravitating astrophysical systems whose dynamics could be fully addressed in the framework of $f(R)$-gravity.