Do you want to publish a course? Click here

Detecting Optical Channel Non-Reciprocity with Non-Local Quantum Geometric Phase

93   0   0.0 ( 0 )
 Added by Antia Lamas-Linares
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

Non-reciprocal devices are of increasing interest in quantum information technologies. This paper examines whether the presence of a non-reciprocal device in an optical channel is detectable by the communicating parties. We find that a non-reciprocal device such as a Faraday Rotator results in a measurable geometric phase for the light propagating through the channel and that, when using entangled photon pairs, the resulting phase is non-local and robust against malicious manipulation.



rate research

Read More

Non-reciprocal photonic devices are essential components of classical optical information processing. It is interesting and important to investigate their feasibility in the quantum world. In this work, the quantum properties of an on-chip silicon nitride (SiN)-based magneto-optical (MO) isolator were studied using a single-photon non-reciprocal dynamical transmission experiment. The measured isolation ratio for single photons achieved was 12.33 dB, which proved the functionality of our on-chip isolator. The quantum coherence of the passing single photons was further verified using high-visibility quantum interference. Our work will promote on-chip isolators within the integrated quantum circuits and help introduce novel phenomena in quantum information processes.
358 - Anthony Martin 2011
We report the experimental observation of the nonlocal geometric phase in Hanbury Brown-Twiss polarized intensity interferometry. The experiment involves two independent, polar- ized, incoherent sources, illuminating two polarized detectors. Varying the relative polarization angle between the detectors introduces a geometric phase equal to half the solid angle on the Poincare sphere traced out by a pair of single photons. Local measurements at either detector do not reveal the effect of the geometric phase, which appears only in the coincidence counts between the two detectors, showing a genuinely nonlocal effect. We show experimentally that coincidence rates of photon arrival times at separated detectors can be controlled by the two photon geometric phase. This effect can be used for manipulating and controlling photonic entanglement.
An all-optical scheme for simulating non-Markovian evolution of a quantum system is proposed. It uses only linear optics elements and by controlling the system parameters allows one to control the presence or absence of information backflow from the environment. A sufficient and necessary condition for the non-Markovianity of our channel based on Gaussian inputs is proved. Various criteria for detecting non-Markovianity are also investigated by checking the dynamical evolution of the channel.
Optical non-reciprocity, a phenomenon that allows unidirectional flow of optical field is pivoted on the time reversal symmetry breaking. The symmetry breaking happens in the cavity optomechanical system (COS) due to non uniform radiation pressure as a result of light-matter interaction, and is crucial in building non-reciprocal optical devices. In our proposed COS, we study the non-reciprocal transport of optical signals across two ports via three optical modes optomechanically coupled to the mechanical excitations of two nano-mechanical resonators (NMRs) under the influence of strong classical drive fields and weak probe fields. By tuning different system parameters, we discover the conversion of reciprocal to non-reciprocal signal transmission. We reveal perfect nonreciprocal transmission of output fields when the effective cavity detuning parameters are near resonant to the NMRs frequencies. The unidirectional non-reciprocal signal transport is robust to the optomechanical coupling parameters at resonance conditions. Moreover, the cavities photon loss rates play an inevitable role in the unidirectional flow of signal across the two ports. Bidirectional transmission can be fully controlled by the phase changes associated with the incoming probe and drive fields via two ports. Our scheme may provide a foundation for the compact non-reciprocal communication and quantum information processing, thus enabling new devices that route photons in unconventional ways such as all-optical diodes, optical transistors and optical switches.
Quantum channels, which break entanglement, incompatibility, or nonlocality, are not useful for entanglement-based, one-sided device-independent, or device-independent quantum information processing, respectively. Here, we show that such breaking channels are related to certain temporal quantum correlations, i.e., temporal separability, channel unsteerability, temporal unsteerability, and macrorealism. More specifically, we first define the steerability-breaking channel, which is conceptually similar to the entanglement and nonlocality-breaking channels and prove that it is identical to the incompatibility-breaking channel. Similar to the hierarchy relations of the temporal and spatial quantum correlations, the hierarchy of non-breaking channels is discussed. We then introduce the concept of the channels which break temporal correlations, explain how they are related to the standard breaking channels, and prove the following results: (1) A certain measure of temporal nonseparability can be used to quantify a non-entanglement-breaking channel in the sense that the measure is a memory monotone under the framework of the resource theory of the quantum memory. (2) A non-steerability-breaking channel can be certified with channel steering because the steerability-breaking channel is equivalent to the incompatibility-breaking channel. (3) The temporal steerability and non-macrorealism can, respectively, distinguish the steerability-breaking and the nonlocality-breaking unital channel from their corresponding non-breaking channels. Finally, a two-dimensional depolarizing channel is experimentally implemented as a proof-of-principle example to compare the temporal quantum correlations with non-breaking channels.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا