Do you want to publish a course? Click here

Universal detection of entanglement in two-qubit states using only two copies

59   0   0.0 ( 0 )
 Added by Suchetana Goswami
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

We revisit the problem of detection of entanglement of an unknown two-qubit state using minimal resources. Using weak values and just two copies of an arbitrary two-qubit state, we present a protocol where a post selection measurement in the computational basis provides enough information to identify if the state is entangled or not. Our protocol enables complete state identification with a single-setting post selection measurement on two copies of the state. It follows that by restricting to pure states, the global interaction required for determining the weak values can be realized by local operations. We further show that our protocol is robust against errors arising from inappropriate global interactions applied during weak value determination.



rate research

Read More

Two qubits in pure entangled states going through separate paths and interacting with their own individual environments will gradually lose their entanglement. Here we show that the entanglement change of a two-qubit state due to amplitude damping noises can be recovered by entanglement swapping. Some initial states can be asymptotically purified into maximally entangled states by iteratively using our protocol.
Recently, the fast development of quantum technologies led to the need for tools allowing the characterization of quantum resources. In particular, the ability to estimate non-classical aspects, e.g. entanglement and quantum discord, in two-qubit systems, is relevant to optimise the performance of quantum information processes. Here we present an experiment in which the amount of entanglement and discord are measured exploiting different estimators. Among them, some will prove to be optimal, i.e., able to reach the ultimate precision bound allowed by quantum mechanics. These estimation techniques have been tested with a specific family of states ranging from nearly pure Bell states to completely mixed states. This work represents a significant step in the development of reliable metrological tools for quantum technologies.
We present the convergence study of a recurrence entanglement purification protocol using arbitrary two-qubit initial states. The protocol is based on a rank two projector in the Bell basis which serves as a two-qubit operation replacing the usual controlled-NOT gate. We show that the whole space of two-qubit density matrices is mapped onto an invariant subspace characterized by seven real parameters. By analyzing this type of density matrices we are able to find general conditions for entanglement purification in the form of two inequalities between pairs of diagonal elements and pairs of coherences. We show that purifiable initial states do not necessary require a fidelity larger than one half with respect to any maximally entangled pure state. Furthermore, we find a family of states parametrized by their concurrence that can be perfectly converted into a Bell state in just one step of the protocol with probability proportional to the square of the concurrence.
Among various definitions of quantum correlations, quantum discord has attracted considerable attention. To find analytical expression of quantum discord is an intractable task. In this paper, we discuss thoroughly the case of two-qubit rank-two states. An analytical expression for the quantum discord is obtained by means of Koashi-Winter relation. A geometric picture is demonstrated by means of quantum steering ellipsoid. We point out that in this case the optimal measurement is indeed the von Neumann measurement, which is usually used in the study of quantum discord. However, for some two-qubit states with the rank larger than two, we find that three-element POVM measurement is more optimal. It means that more careful attention should be paid in the discussion of quantum discord.
48 - Dafa Li 2018
In [Science 340, 1205, 7 June (2013)], via polytopes Michael Walter et al. proposed a sufficient condition detecting the genuinely entangled pure states. In this paper, we indicate that generally, the coefficient vector of a pure product state of $n$ qubits cannot be decomposed into a tensor product of two vectors, and show that a pure state of $n$ qubits is a product state if and only if there exists a permutation of qubits such that under the permutation, its coefficient vector arranged in ascending lexicographical order can be decomposed into a tensor product of two vectors. The contrapositive of this result reads that a pure state of $n$ qubits is genuinely entangled if and only if its coefficient vector cannot be decomposed into a tensor product of two vectors under any permutation of qubits. Further, by dividing a coefficient vector into $2^{i}$ equal-size block vectors, we show that the coefficient vector can be decomposed into a tensor product of two vectors if and only if any two non-zero block vectors of the coefficient vector are proportional. In terms of textquotedblleft proportionalitytextquotedblright , we can rephrase that a pure state of $n$ qubits is genuinely entangled if and only if there are two non-zero block vectors of the coefficient vector which are not proportional under any permutation of qubits. Thus, we avoid decomposing a coefficient vector into a tensor product of two vectors to detect the genuine entanglement. We also present the full decomposition theorem for product states of n qubits.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا