No Arabic abstract
We present the convergence study of a recurrence entanglement purification protocol using arbitrary two-qubit initial states. The protocol is based on a rank two projector in the Bell basis which serves as a two-qubit operation replacing the usual controlled-NOT gate. We show that the whole space of two-qubit density matrices is mapped onto an invariant subspace characterized by seven real parameters. By analyzing this type of density matrices we are able to find general conditions for entanglement purification in the form of two inequalities between pairs of diagonal elements and pairs of coherences. We show that purifiable initial states do not necessary require a fidelity larger than one half with respect to any maximally entangled pure state. Furthermore, we find a family of states parametrized by their concurrence that can be perfectly converted into a Bell state in just one step of the protocol with probability proportional to the square of the concurrence.
As the hyperentanglement of photon systems presents lots of unique opportunities in high-capacity quantum networking, the hyperentanglement purification protocol (hyper-EPP) becomes a vital project work and the quality of its accomplishment attracts much attention recently. Here we present the first theoretical scheme of faithful hyper-EPP for nonlocal two-photon systems in two degrees of freedom (DOFs) by constructing several fidelity-robust quantum circuits for hyper-encoded photons. With this faithful hyper-EPP, the bit-flip errors in both the polarization and spatial-mode DOFs can be efficiently corrected and the maximal hyperentanglement in two DOFs could be in principle achieved by performing the hyper-EPP multiple rounds. Moreover, the fidelity-robust quantum circuits, parity-check quantum nondemolition detectors, and SWAP gates make this hyper-EPP works faithfully as the errors coming from practical scattering, in these quantum circuits, are converted into a detectable failure rather than infidelity. Furthermore, this hyper-EPP can be directly extended to purify photon systems entangled in single polarization or spatial-mode DOF and that hyperentangled in polarization and multiple-spatial-mode DOFs.
Two qubits in pure entangled states going through separate paths and interacting with their own individual environments will gradually lose their entanglement. Here we show that the entanglement change of a two-qubit state due to amplitude damping noises can be recovered by entanglement swapping. Some initial states can be asymptotically purified into maximally entangled states by iteratively using our protocol.
Nonlocality and entanglement are not only the fundamental characteristics of quantum mechanics but also important resources for quantum information and computation applications. Exploiting the quantitative relationship between the two different resources is of both theoretical and practical significance. The common choice for quantifying the nonlocality of a two-qubit state is the maximal violation of the Clauser-Horne-Shimony-Holt inequality. That for entanglement is entanglement of formation, which is a function of the concurrence. In this paper, we systematically investigate the quantitative relationship between the entanglement and nonlocality of a general two-qubit system. We rederive a known upper bound on the nonlocality of a general two-qubit state, which depends on the states entanglement. We investigate the condition that the nonlocality of two different two-qubit states can be optimally stimulated by the same nonlocality test setting and find the class of two-qubit state pairs that have this property. Finally, we obtain the necessary and sufficient condition that the upper bound can be reached.
Entanglement and Bell nonlocality are used to describe quantum inseparabilities. Bell-nonlocal states form a strict subset of entangled states. A natural question arises concerning how much territory Bell nonlocality occupies entanglement for a general two-qubit entangled state. In this work, we investigate the relation between entanglement and Bell nonlocality by using lots of randomly generated two-qubit states, and give out a constraint inequality relation between the two quantum resources. For studying the upper or lower boundary of the inequality relation, we discover maximally (minimally) nonlocal entangled states, which maximize (minimize) the value of the Bell nonlocality for a given value of the entanglement. Futhermore, we consider a special kind of mixed state transformed by performing an arbitrary unitary operation on werner state. It is found that the special mixed states entanglement and Bell nonlocality are related to ones of a pure state transformed by the unitary operation performed on the Bell state.
Recently, the fast development of quantum technologies led to the need for tools allowing the characterization of quantum resources. In particular, the ability to estimate non-classical aspects, e.g. entanglement and quantum discord, in two-qubit systems, is relevant to optimise the performance of quantum information processes. Here we present an experiment in which the amount of entanglement and discord are measured exploiting different estimators. Among them, some will prove to be optimal, i.e., able to reach the ultimate precision bound allowed by quantum mechanics. These estimation techniques have been tested with a specific family of states ranging from nearly pure Bell states to completely mixed states. This work represents a significant step in the development of reliable metrological tools for quantum technologies.