No Arabic abstract
Parallel implementations of linear iterative solvers generally alternate between phases of data exchange and phases of local computation. Increasingly large problem sizes on more heterogeneous systems make load balancing and network layout very challenging tasks. In particular, global communication patterns such as inner products become increasingly limiting at scale. We explore the use of asynchronous communication based on one-sided MPI primitives in a multitude of domain decomposition solvers. In particular, a scalable asynchronous two-level method is presented. We discuss practical issues encountered in the development of a scalable solver and show experimental results obtained on state-of-the-art supercomputer systems that illustrate the benefits of asynchronous solvers in load balanced as well as load imbalanced scenarios. Using the novel method, we can observe speed-ups of up to 4x over its classical synchronous equivalent.
Physics-Informed Neural Networks (PINN) are neural networks encoding the problem governing equations, such as Partial Differential Equations (PDE), as a part of the neural network. PINNs have emerged as a new essential tool to solve various challenging problems, including computing linear systems arising from PDEs, a task for which several traditional methods exist. In this work, we focus first on evaluating the potential of PINNs as linear solvers in the case of the Poisson equation, an omnipresent equation in scientific computing. We characterize PINN linear solvers in terms of accuracy and performance under different network configurations (depth, activation functions, input data set distribution). We highlight the critical role of transfer learning. Our results show that low-frequency components of the solution converge quickly as an effect of the F-principle. In contrast, an accurate solution of the high frequencies requires an exceedingly long time. To address this limitation, we propose integrating PINNs into traditional linear solvers. We show that this integration leads to the development of new solvers whose performance is on par with other high-performance solvers, such as PETSc conjugate gradient linear solvers, in terms of performance and accuracy. Overall, while the accuracy and computational performance are still a limiting factor for the direct use of PINN linear solvers, hybrid strategies combining old traditional linear solver approaches with new emerging deep-learning techniques are among the most promising methods for developing a new class of linear solvers.
Unfitted finite element methods, e.g., extended finite element techniques or the so-called finite cell method, have a great potential for large scale simulations, since they avoid the generation of body-fitted meshes and the use of graph partitioning techniques, two main bottlenecks for problems with non-trivial geometries. However, the linear systems that arise from these discretizations can be much more ill-conditioned, due to the so-called small cut cell problem. The state-of-the-art approach is to rely on sparse direct methods, which have quadratic complexity and are thus not well suited for large scale simulations. In order to solve this situation, in this work we investigate the use of domain decomposition preconditioners (balancing domain decomposition by constraints) for unfitted methods. We observe that a straightforward application of these preconditioners to the unfitted case has a very poor behavior. As a result, we propose a {customization} of the classical BDDC methods based on the stiffness weighting operator and an improved definition of the coarse degrees of freedom in the definition of the preconditioner. These changes lead to a robust and algorithmically scalable solver able to deal with unfitted grids. A complete set of complex 3D numerical experiments show the good performance of the proposed preconditioners.
Alternating least squares is the most widely used algorithm for CP tensor decomposition. However, alternating least squares may exhibit slow or no convergence, especially when high accuracy is required. An alternative approach is to regard CP decomposition as a nonlinear least squares problem and employ Newton-like methods. Direct solution of linear systems involving an approximated Hessian is generally expensive. However, recent advancements have shown that use of an implicit representation of the linear system makes these methods competitive with alternating least squares. We provide the first parallel implementation of a Gauss-Newton method for CP decomposition, which iteratively solves linear least squares problems at each Gauss-Newton step. In particular, we leverage a formulation that employs tensor contractions for implicit matrix-vector products within the conjugate gradient method. The use of tensor contractions enables us to employ the Cyclops library for distributed-memory tensor computations to parallelize the Gauss-Newton approach with a high-level Python implementation. In addition, we propose a regularization scheme for Gauss-Newton method to improve convergence properties without any additional cost. We study the convergence of variants of the Gauss-Newton method relative to ALS for finding exact CP decompositions as well as approximate decompositions of real-world tensors. We evaluate the performance of sequential and parall
Gauss-Seidel (GS) relaxation is often employed as a preconditioner for a Krylov solver or as a smoother for Algebraic Multigrid (AMG). However, the requisite sparse triangular solve is difficult to parallelize on many-core architectures such as graphics processing units (GPUs). In the present study, the performance of the traditional GS relaxation based on a triangular solve is compared with two-stage variants, replacing the direct triangular solve with a fixed number of inner Jacobi-Richardson (JR) iterations. When a small number of inner iterations is sufficient to maintain the Krylov convergence rate, the two-stage GS (GS2) often outperforms the traditional algorithm on many-core architectures. We also compare GS2 with JR. When they perform the same number of flops for SpMV (e.g. three JR sweeps compared to two GS sweeps with one inner JR sweep), the GS2 iterations, and the Krylov solver preconditioned with GS2, may converge faster than the JR iterations. Moreover, for some problems (e.g. elasticity), it was found that JR may diverge with a damping factor of one, whereas two-stage GS may improve the convergence with more inner iterations. Finally, to study the performance of the two-stage smoother and preconditioner for a practical problem, %(e.g. using tuned damping factors), these were applied to incompressible fluid flow simulations on GPUs.
We present a neural network-based method for solving linear and nonlinear partial differential equations, by combining the ideas of extreme learning machines (ELM), domain decomposition and local neural networks. The field solution on each sub-domain is represented by a local feed-forward neural network, and $C^k$ continuity is imposed on the sub-domain boundaries. Each local neural network consists of a small number of hidden layers, while its last hidden layer can be wide. The weight/bias coefficients in all hidden layers of the local neural networks are pre-set to random values and are fixed, and only the weight coefficients in the output layers are training parameters. The overall neural network is trained by a linear or nonlinear least squares computation, not by the back-propagation type algorithms. We introduce a block time-marching scheme together with the presented method for long-time dynamic simulations. The current method exhibits a clear sense of convergence with respect to the degrees of freedom in the neural network. Its numerical errors typically decrease exponentially or nearly exponentially as the number of degrees of freedom increases. Extensive numerical experiments have been performed to demonstrate the computational performance of the presented method. We compare the current method with the deep Galerkin method (DGM) and the physics-informed neural network (PINN) in terms of the accuracy and computational cost. The current method exhibits a clear superiority, with its numerical errors and network training time considerably smaller (typically by orders of magnitude) than those of DGM and PINN. We also compare the current method with the classical finite element method (FEM). The computational performance of the current method is on par with, and oftentimes exceeds, the FEM performance.