No Arabic abstract
Today, there is a plethora of software security tools employing visualizations that enable the creation of useful and effective interactive security analyst dashboards. Such dashboards can assist the analyst to understand the data at hand and, consequently, to conceive more targeted preemption and mitigation security strategies. Despite the recent advances, model-based security analysis is lacking tools that employ effective dashboards---to manage potential attack vectors, system components, and requirements. This problem is further exacerbated because model-based security analysis produces significantly larger result spaces than security analysis applied to realized systems---where platform specific information, softwar
This paper presents a cognitive behavioral-based driver mood repairment platform in intelligent transportation cyber-physical systems (IT-CPS) for road safety. In particular, we propose a driving safety platform for distracted drivers, namely emph{drive safe}, in IT-CPS. The proposed platform recognizes the distracting activities of the drivers as well as their emotions for mood repair. Further, we develop a prototype of the proposed drive safe platform to establish proof-of-concept (PoC) for the road safety in IT-CPS. In the developed driving safety platform, we employ five AI and statistical-based models to infer a vehicle drivers cognitive-behavioral mining to ensure safe driving during the drive. Especially, capsule network (CN), maximum likelihood (ML), convolutional neural network (CNN), Apriori algorithm, and Bayesian network (BN) are deployed for driver activity recognition, environmental feature extraction, mood recognition, sequential pattern mining, and content recommendation for affective mood repairment of the driver, respectively. Besides, we develop a communication module to interact with the systems in IT-CPS asynchronously. Thus, the developed drive safe PoC can guide the vehicle drivers when they are distracted from driving due to the cognitive-behavioral factors. Finally, we have performed a qualitative evaluation to measure the usability and effectiveness of the developed drive safe platform. We observe that the P-value is 0.0041 (i.e., < 0.05) in the ANOVA test. Moreover, the confidence interval analysis also shows significant gains in prevalence value which is around 0.93 for a 95% confidence level. The aforementioned statistical results indicate high reliability in terms of drivers safety and mental state.
There has been an intense concern for security alternatives because of the recent rise of cyber attacks, mainly targeting critical systems such as industry, medical, or energy ecosystem. Though the latest industry infrastructures largely depend on AI-driven maintenance, the prediction based on corrupted data undoubtedly results in loss of life and capital. Admittedly, an inadequate data-protection mechanism can readily challenge the security and reliability of the network. The shortcomings of the conventional cloud or trusted certificate-driven techniques have motivated us to exhibit a unique Blockchain-based framework for a secure and efficient industry 4.0 system. The demonstrated framework obviates the long-established certificate authority after enhancing the consortium Blockchain that reduces the data processing delay, and increases cost-effective throughput. Nonetheless, the distributed industry 4.0 security model entails cooperative trust than depending on a single party, which in essence indulges the costs and threat of the single point of failure. Therefore, multi-signature technique of the proposed framework accomplishes the multi-party authentication, which confirms its applicability for the real-time and collaborative cyber-physical system.
We consider malicious attacks on actuators and sensors of a feedback system which can be modeled as additive, possibly unbounded, disturbances at the digital (cyber) part of the feedback loop. We precisely characterize the role of the unstable poles and zeros of the system in the ability to detect stealthy attacks in the context of the sampled data implementation of the controller in feedback with the continuous (physical) plant. We show that, if there is a single sensor that is guaranteed to be secure and the plant is observable from that sensor, then there exist a class of multirate sampled data controllers that ensure that all attacks remain detectable. These dual rate controllers are sampling the output faster than the zero order hold rate that operates on the control input and as such, they can even provide better nominal performance than single rate, at the price of higher sampling of the continuous output.
Increased access to mobile devices motivates the need to design communicative visualizations that are responsive to varying screen sizes. However, relatively little design guidance or tooling is currently available to authors. We contribute a detailed characterization of responsive visualization strategies in communication-oriented visualizations, identifying 76 total strategies by analyzing 378 pairs of large screen (LS) and small screen (SS) visualizations from online articles and reports. Our analysis distinguishes between the Targets of responsive visualization, referring to what elements of a design are changed and Actions representing how targets are changed. We identify key trade-offs related to authors need to maintain graphical density, referring to the amount of information per pixel, while also maintaining the message or intended takeaways for users of a visualization. We discuss implications of our findings for future visualization tool design to support responsive transformation of visualization designs, including requirements for automated recommenders for communication-oriented responsive visualizations.
An analytical approach for a dynamic cyber-security problem that captures progressive attacks to a computer network is presented. We formulate the dynamic security problem from the defenders point of view as a supervisory control problem with imperfect information, modeling the computer networks operation by a discrete event system. We consider a min-max performance criterion and use dynamic programming to determine, within a restricted set of policies, an optimal policy for the defender. We study and interpret the behavior of this optimal policy as we vary certain parameters of the supervisory control problem.