No Arabic abstract
An n-dimensional complex manifold is a manifold by biholomorphic mappings between open sets of the finite direct product of the complex number field. On the other hand, when A is a commutative Banach algebra, Lorch gave a definition that an A-valued function on an open set of A is holomorphic. The definition of a holomorphic function by Lorch can be straightforwardly generalized to an A-valued function on an open set of the finite direct product of A. Therefore, a manifold modeled on the finite direct product of A (an n-dimensional A-manifold) is easily defined. However, in my opinion, it seems that so many nontrivial examples were not known (including the case of n=1, that is, Riemann surfaces). By the way, if X is a compact Hausdorff space, then the algebra C(X) of all complex valued continuous functions on X is the most basic example of a commutative Banach algebra (furthermore, a commutative C*-algebra). In this note, we see that if the set of all continuous cross sections of a continuous family M of compact complex manifolds (a topological deformation M of compact complex analytic structures) on X is denoted by G(M), then the structure of a C(X)-manifold modeled on the C(X)-modules of all continuous cross sections of complex vector bundles on X is introduced into G(M). Therefore, especially, if X is contractible, then G(M) is a finite-dimensional C(X)-manifold.
Let $A$ be a commutative Banach algebra. Let $M$ be a complex manifold on $A$ (an $A$-manifold). Then, we define an $A$-holomorphic vector bundle $(wedge^kT^*)(M)$ on $M$. For an open set $U$ of $M$, $omega$ is said to be an $A$-holomorphic differential $k$-form on $U$, if $omega$ is an $A$-holomorphic section of $(wedge^kT^*)(M)$ on $U$. So, if the set of all $A$-holomorphic differential $k$-forms on $U$ is denoted by $Omega_{M}^k(U)$, then ${Omega_{M}^k(U)}_{U}$ is a sheaf of modules on the structure sheaf $O_M$ of the $A$-manifold $M$ and the cohomology group $H^l(M,Omega_{M}^k)$ with the coefficient sheaf ${Omega_{M}^k(U)}_{U}$ is an $O_M(M)$-module and therefore, in particular, an $A$-module. There is no new thing in our definition of a holomorphic differential form. However, this is necessary to get the cohomology group $H^l(M,Omega_{M}^k)$ as an $A$-module. Furthermore, we try to define the structure sheaf of a manifold that is locally a continuous family of $mathbb C$-manifolds (and also the one of an analytic family). Directing attention to a finite family of $mathbb C$-manifolds, we mentioned the possibility that Dolbeault theorem holds for a continuous sum of $mathbb C$-manifolds. Also, we state a few related problems. One of them is the following. Let $nin mathbb N$. Then, does there exist a $mathbb C^n$-manifold $N$ such that for any $mathbb C$-manifolds $M_1, M_2, cdots, M_{n-1}$ and $M_n$, $N$ can not be embedded in the direct product $M_1times M_2 times cdots times M_{n-1} times M_n$ as a $mathbb C^n$-manifold ? So, we propose something that is likely to be a candidate for such a $mathbb C^2$-manifold $N$.
We study holomorphic GL(2) and SL(2) geometries on compact complex manifolds. We show that a compact Kahler manifold of complex even dimension higher than two admitting a holomorphic GL(2)-geometry is covered by a compact complex torus. We classify compact Kahler-Einstein manifolds and Fano manifolds bearing holomorphic GL(2)-geometries. Among the compact Kahler-Einstein manifolds we prove that the only examples bearing holomorphic GL(2)-geometry are those covered by compact complex tori, the three dimensional quadric and those covered by the three dimensional Lie ball (the non compact dual of the quadric).
This is a survey paper dealing with holomorphic G-structures and holomorphic Cartan geometries on compact complex manifolds. Our emphasis is on the foliated case: holomorphic foliations with transverse (branched or generalized) holomorphic Cartan geometries.
This article investigates the subject of rigid compact complex manifolds. First of all we investigate the different notions of rigidity (local rigidity, global rigidity, infinitesimal rigidity, etale rigidity and strong rigidity) and the relations among them. Only for curves these notions coincide and the only rigid curve is the projective line. For surfaces we prove that a rigid surface which is not minimal of general type is either a Del Pezzo surface of degree >= 5 or an Inoue surface. We give examples of rigid manifolds of dimension n >= 3 and Kodaira dimensions 0, and 2 <=k <= n. Our main theorem is that the Hirzebruch Kummer coverings of exponent n >= 4 branched on a complete quadrangle are infinitesimally rigid. Moreover, we pose a number of questions.
In order to look for a well-behaved counterpart to Dolbeault cohomology in D-complex geometry, we study the de Rham cohomology of an almost D-complex manifold and its subgroups made up of the classes admitting invariant, respectively anti-invariant, representatives with respect to the almost D-complex structure, miming the theory introduced by T.-J. Li and W. Zhang in [T.-J. Li, W. Zhang, Comparing tamed and compatible symplectic cones and cohomological properties of almost complex manifolds, Comm. Anal. Geom. 17 (2009), no. 4, 651-684] for almost complex manifolds. In particular, we prove that, on a 4-dimensional D-complex nilmanifold, such subgroups provide a decomposition at the level of the real second de Rham cohomology group. Moreover, we study deformations of D-complex structures, showing in particular that admitting D-Kaehler structures is not a stable property under small deformations.