No Arabic abstract
The X-ray emission of O-type stars was first discovered in the early days of the Einstein satellite. Since then many different surveys have confirmed that the ratio of X-ray to bolometric luminosity in O-type stars is roughly constant, but there is a paucity of studies that account for detailed information on spectral and wind properties of O-stars. Recently a significant sample of O stars within our Galaxy was spectroscopically identified and presented in the Galactic O-Star Spectroscopic Survey (GOSS). At the same time, a large high-fidelity catalog of X-ray sources detected by the XMM-Newton X-ray telescope was released. Here we present the X-ray catalog of O stars with known spectral types and investigate the dependence of their X-ray properties on spectral type as well as stellar and wind parameters. We find that, among the GOSS sample, 127 O-stars have a unique XMM-Newton source counterpart and a Gaia data release 2 (DR2) association. Terminal velocities are known for a subsample of 35 of these stars. We confirm that the X-ray luminosities of dwarf and giant O stars correlate with their bolometric luminosity. For the subsample of O stars with measure terminal velocities we find that the X-ray luminosities of dwarf and giant O stars also correlate with wind parameters. However, we find that these correlations break down for supergiant stars. Moreover, we show that supergiant stars are systematically harder in X-rays compared to giant and dwarf O-type stars. We find that the X-ray luminosity depends on spectral type, but seems to be independent of whether the stars are single or in a binary system. Finally, we show that the distribution of log(Lx/Lbol) in our sample stars is non-Gaussian, with the peak of the distribution at log(Lx/Lbol) around -6.6.
We have studied the X-ray luminosity function (XLF) of low-mass X-ray binaries (LMXBs) in the nearby lenticular galaxy NGC 3115, using the Megasecond Chandra X-Ray Visionary Project Observation. With a total exposure time of ~1.1 Ms, we constructed the XLF down to a limiting luminosity of ~10^36 erg/s, much deeper than typically reached for other early-type galaxies. We found significant flattening of the overall LMXB XLF from dN/dL propto L^{-2.2pm0.4} above 5.5x10^37 erg/s to dN/dL propto L^{-1.0pm0.1} below it, though we could not rule out a fit with a higher break at ~1.6x10^38 erg/s. We also found evidence that the XLF of LMXBs in globular clusters (GCs) is overall flatter than that of field LMXBs. Thus our results for this galaxy do not support the idea that all LMXBs are formed in GCs. The XLF of field LMXBs seems to show spatial variation, with the XLF in the inner region of the galaxy being flatter than that in the outer region, probably due to contamination of LMXBs from undetected and/or disrupted GCs in the inner region. The XLF in the outer region is probably the XLF of primordial field LMXBs, exhibiting dN/dL propto L^{-1.2pm0.1} up to a break close to the Eddington limit of neutron star LMXBs (~1.7x10^38 erg/s). The break of the GC LMXB XLF is lower, at ~1.1x10^37 erg/s. We also confirm previous findings that the metal-rich/red GCs are more likely to host LMXBs than the metal-poor/blue GCs, which is more significant for more luminous LMXBs, and that more massive GCs are more likely to host LMXBs.
We study properties of luminous X-ray pulsars using a simplified model of the accretion column. The maximal possible luminosity is calculated as a function of the neutron star (NS) magnetic field and spin period. It is shown that the luminosity can reach values of the order of $10^{40},{rm erg/s}$ for the magnetar-like magnetic field ($Bgtrsim 10^{14},{rm G}$) and long spin periods ($Pgtrsim 1.5,{rm s}$). The relative narrowness of an area of feasible NS parameters which are able to provide higher luminosities leads to the conclusion that $Lsimeq 10^{40},,{rm erg/s}$ is a good estimate for the limiting accretion luminosity of a NS. Because this luminosity coincides with the cut-off observed in the high mass X-ray binaries luminosity function which otherwise does not show any features at lower luminosities, we can conclude that a substantial part of ultra-luminous X-ray sources are accreting neutron stars in binary systems.
We report the results of an optical campaign carried out by the XMM-Newton Survey Science Centre with the specific goal of identifying the brightest X-ray sources in the XMM-Newton Galactic Plane Survey of Hands et al. (2004). In addition to photometric and spectroscopic observations obtained at the ESO-VLT and ESO-3.6m, we used cross-correlations with the 2XMMi, USNO-B1.0, 2MASS and GLIMPSE catalogues to progress the identification process. Active coronae account for 16 of the 30 identified X-ray sources. Many of the identified hard X-ray sources are associated with massive stars emitting at intermediate X-ray luminosities of 10^32-34 erg/s. Among these are a very absorbed likely hyper-luminous star with X-ray/optical spectra and luminosities comparable with those of eta Carina, a new X-ray selected WN8 Wolf-Rayet star, a new Be/X-ray star belonging to the growing class of Gamma-Cas analogs and a possible supergiant X-ray binary of the kind discovered recently by INTEGRAL. One of the sources, XGPS-25 has a counterpart which exhibits HeII 4686 and Bowen CIII-NIII emission lines suggesting a quiescent or X-ray shielded Low Mass X-ray Binary, although its properties might also be consistent with a rare kind of cataclysmic variable (CV). We also report the discovery of three new CVs, one of which is a likely magnetic system. The soft (0.4-2.0 keV) band LogN-LogS curve is completely dominated by active stars in the flux range of 1x10^-13 to 1x10^-14 erg/cm2/s. In total, we are able to identify a large fraction of the hard (2-10 keV) X-ray sources in the flux range of 1x10^-12 to 1x10^-13 erg/cm2/s with Galactic objects at a rate consistent with that expected for the Galactic contribution only. (abridged)
The hot circum-galactic medium (CGM) represents the hot gas distributed beyond the stellar content of the galaxies while typically within their dark matter halos. It serves as a depository of energy and metal-enriched materials from galactic feedback and a reservoir from which the galaxy acquires fuels to form stars. It thus plays a critical role in the coevolution of galaxies and their environments. X-rays are one of the best ways to trace the hot CGM. I will briefly review what we have learned about the hot CGM based on X-ray observations over the past two decades, and what we still do not know. I will also briefly prospect what may be the foreseeable breakthrough in the next one or two decades with future X-ray missions.
We report on radio and X-ray observations of PSR 1832+0029, a 533-ms radio pulsar discovered in the Parkes Multibeam Pulsar Survey. From radio observations taken with the Parkes, Lovell and Arecibo telescopes, we show that this pulsar exhibits two spindown states akin to PSRs B1931+24 reported by Kramer et al. and J1841-0500 reported by Camilo et al. Unlike PSR B1931+24, which switches between on and off states on a 30--40 day time-scale, PSR 1832+0029 is similar to PSR J1841-0500 in that it spends a much longer period of time in the off-state. So far, we have fully sampled two off-states. The first one lasted between 560 and 640 days and the second one lasted between 810 and 835 days. From our radio timing observations, the ratio of on/off spindown rates is $1.77 pm 0.03$. Chandra observations carried out during both the on- and off-states of this pulsar failed to detect any emission. Our results challenge but do not rule out models involving accretion onto the neutron star from a low-mass stellar companion. In spite of the small number of intermittent pulsars currently known, difficulties in discovering them and in quantifying their behavior imply that their total population could be substantial.