Do you want to publish a course? Click here

X-ray Structure between the Innermost Disk and Optical Broad Line Region in NGC 4151

111   0   0.0 ( 0 )
 Added by Jon M. Miller
 Publication date 2018
  fields Physics
and research's language is English
 Authors J. M. Miller




Ask ChatGPT about the research

We present an analysis of the narrow Fe K-alpha line in Chandra/HETGS observations of the Seyfert AGN, NGC 4151. The sensitivity and resolution afforded by the gratings reveal asymmetry in this line. Models including weak Doppler boosting, gravitational red-shifts, and scattering are generally preferred over Gaussians at the 5 sigma level of confidence, and generally measure radii consistent with R ~ 500-1000 GM/c^2. Separate fits to high/unobscured and low/obscured phases reveal that the line originates at smaller radii in high flux states; model-independent tests indicate that this effect is significant at the 4-5 sigma level. Some models and Delta t ~ 2 E+4 s variations in line flux suggest that the narrow Fe K-alpha line may originate at radii as small as R ~ 50-130 GM/c^2 in high flux states. These results indicate that the narrow Fe K-alpha line in NGC 4151 is primarily excited in the innermost part of the optical broad line region (BLR), or X-ray BLR. Alternatively, a warp could provide the solid angle needed to enhance Fe K-alpha line emission from intermediate radii, and might resolve an apparent discrepancy in the inclination of the innermost and outer disk in NGC 4151. Both warps and the BLR may originate through radiation pressure, so these explanations may be linked. We discuss our results in detail, and consider the potential for future observations with Chandra, XARM, and ATHENA to measure black hole masses and to study the intermediate disk in AGN using narrow Fe K-alpha emission lines.



rate research

Read More

We present the first extensive study of the coronal line variability in an active galaxy. Our data set for the nearby source NGC 4151 consists of six epochs of quasi-simultaneous optical and near-infrared spectroscopy spanning a period of about eight years and five epochs of X-ray spectroscopy overlapping in time with it. None of the coronal lines showed the variability behaviour observed for the broad emission lines and hot dust emission. In general, the coronal lines varied only weakly, if at all. Using the optical [Fe VII] and X-ray O VII emission lines we estimate that the coronal line gas has a relatively low density of n~10^3 cm^-3 and a relatively high ionisation parameter of log U~1. The resultant distance of the coronal line gas from the ionising source is about two light years, which puts this region well beyond the hot inner face of the obscuring dusty torus. The high ionisation parameter implies that the coronal line region is an independent entity rather than part of a continuous gas distribution connecting the broad and narrow emission line regions. We present tentative evidence for the X-ray heated wind scenario of Pier & Voit. We find that the increased ionising radiation that heats the dusty torus also increases the cooling efficiency of the coronal line gas, most likely due to a stronger adiabatic expansion.
We have analysed Chandra/High Energy Transmission Gratings spectra of the X-ray emission line gas in the Seyfert galaxy NGC 4151. The zeroth order spectral images show extended H- and He-like O and Ne, up to a distance $r sim$ 200 pc from the nucleus. Using the 1st order spectra, we measure an average line velocity $sim -230$ km s$^{-1}$, suggesting significant outflow of X-ray gas. We generated Cloudy photoionisation models to fit the 1st order spectra. We required three emission-line components, with column density, log$N_{H}$, and ionisation parameter, log$U$, of 22.5/1.0, 22.5/0.19, and 23.0/-0.50, respectively. To estimate the total mass of ionised gas and the mass outflow rates, we applied the model parameters to fit the zeroth order emission-line profiles of Ne~IX and Ne~X. We determined the total mass of $approx 5.4 times$ 10$^{5}$ M_sun. Assuming the same kinematic profile as that for the [O~III] gas, the peak X-ray mass outflow rate was $approx 1.8$ M_sun yr$^{-1}$, at $r sim 150$ pc. The total mass and mass outflow rates are similar to those determined using [O~III], implying that the X-ray gas is a major outflow component. However, unlike the optical outflows, the X-ray outflow rate does not drop off at $r >$ 100 pc, which suggests that it may have a greater impact on the host galaxy.
Changing-look quasars are a new class of highly variable active galactic nuclei that have changed their spectral type over surprisingly short timescales of just a few years. The origin of this phenomenon is debated, but is likely to reflect some change in the accretion flow. To investigate the disk-corona systems in these objects, we measure optical/UV-X-ray spectral indices ($alpha_{rm OX}$) and Eddington ratios ($lambda_{rm Edd}$) of ten previously-discovered changing-look quasars at two or more epochs. By comparing these data with simulated results based on the behavior of X-ray binaries, we find possible similarities in spectral indices below 1% Eddington ratio. We further investigate the Eddington ratios of changing-look quasars before and after their spectral type changes, and find that changing-look quasars cross the 1% Eddington ratio boundary when their broad emission lines disappear/emerge. This is consistent with the disk-wind model as the origin of broad emission lines.
332 - A. J. Blustin 2009
We use a 380 ks XMM-Newton high-resolution RGS spectrum to look for narrow spectral features from the nuclear environment of 1H0707-495. We do not find any evidence of a line-of-sight ionized wind (warm absorber). We do, however, detect broad emission lines, of width ~5000 km s^-1, consistent with O VIII Ly-alpha, N VII Ly-alpha, C VI Ly-alpha and a Fe XIX/Fe XX/Ne IX He-alpha blend. Intriguingly, these lines have both blueshifted and redshifted components, whose velocity shifts are consistent with an origin in an accretion disc at ~1600 R_g from the black hole. The features can be interpreted as the narrow line cores of the disc reflection spectrum, thus providing independent support for the discline interpretation of the X-ray spectrum of 1H0707-495. We discuss the relevance of our findings for the `X-ray broad line region in other Seyferts, and for the origins of the optical broad line region itself.
The recent detection of X-ray reverberation lags, especially in the Fe Kalpha line region, around Active Galactic Nuclei (AGN) has opened up the possibility of studying the time-resolved response (reflection) of hard X-rays from the accretion disk around supermassive black holes. Here, we use general relativistic transfer functions for reflection of X-rays from a point source located at some height above the black hole to study the time lags expected as a function of frequency and energy in the Fe Kalpha line region. We explore the models and the dependence of the lags on key parameters such as the height of the X-ray source, accretion disk inclination, black hole spin and black hole mass. We then compare these models with the observed frequency and energy dependence of the Fe Kalpha line lag in NGC 4151. Assuming the optical reverberation mapping mass of $4.6times10^7~M_odot$ we get a best fit to the lag profile across the Fe Kalpha line in the frequency range $(1-2)times10^{-5}$ Hz for an X-ray source located at a height $h = 7^{+2.9}_{-2.6}~R_G$ with a maximally spinning black hole and an inclination $i < 30^circ$.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا