Do you want to publish a course? Click here

Inferring the Composition of Disintegrating Planet Interiors from Dust Tails with Future James Webb Space Telescope Observations

57   0   0.0 ( 0 )
 Added by Eva Bodman
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

Disintegrating planets allow for the unique opportunity to study the composition of the interiors of small, hot, rocky exoplanets because the interior is evaporating and that material is condensing into dust, which is being blown away and then transiting the star. Their transit signal is dominated by dusty effluents forming a comet-like tail trailing the host planet (or leading it, in the case of K2-22b), making these good candidates for transmission spectroscopy. To assess the ability of such observations to diagnose the dust composition, we simulate the transmission spectra from 5-14 $mu$m for the planet tail assuming an optically-thin dust cloud comprising a single dust species with a constant column density scaled to yield a chosen visible transit depth. We find that silicate resonant features near 10 $mu$m can produce transit depths that are at least as large as those in the visible. For the average transit depth of 0.55% in the Kepler band for K2-22b, the features in the transmission spectra can be as large as 1%, which is detectable with the JWST MIRI low-resolution spectrograph in a single transit. The detectability of compositional features is easier with an average grain size of 1 $mu$m despite features being more prominent with smaller grain sizes. We find most features are still detectable for transit depths of ~0.3% in the visible range. If more disintegrating planets are found with future missions such as the space telescope TESS, follow-up observations with JWST can explore the range of planetary compositions.



rate research

Read More

This white paper examines the benefit of the upcoming James Webb Space Telescope for studies of the Solar Systems four giant planets: Jupiter, Saturn, Uranus, and Neptune. JWSTs superior sensitivity, combined with high spatial and spectral resolution, will enable near- and mid-infrared imaging and spectroscopy of these objects with unprecedented quality. In this paper we discuss some of the myriad scientific investigations possible with JWST regarding the giant planets. This discussion is preceded by the specifics of JWST instrumentation most relevant to giant planet observations. We conclude with identification of desired pre-launch testing and operational aspects of JWST that would greatly benefit future studies of the giant planets.
The James Webb Space Telescope will enable a wealth of new scientific investigations in the near- and mid-infrared, with sensitivity and spatial/spectral resolution greatly surpassing its predecessors. In this paper, we focus upon Solar System science facilitated by JWST, discussing the most current information available concerning JWST instrument properties and observing techniques relevant to planetary science. We also present numerous example observing scenarios for a wide variety of Solar System targets to illustrate the potential of JWST science to the Solar System community. This paper updates and supersedes the Solar System white paper published by the JWST Project in 2010 (Lunine et al., 2010). It is based both on that paper and on a workshop held at the annual meeting of the Division for Planetary Sciences in Reno, NV in 2012.
The James Webb Space Telescope (JWST), as the largest space-based astronomical observatory with near- and mid-infrared instrumentation, will elucidate many mysterious aspects of comets. We summarize four cometary science themes especially suited for this telescope and its instrumentation: the drivers of cometary activity, comet nucleus heterogeneity, water ice in comae and on surfaces, and activity in faint comets and main-belt asteroids. With JWST, we can expect the most distant detections of gas, especially CO2, in what we now consider to be only moderately bright comets. For nearby comets, coma dust properties can be studied with their driving gases, measured simultaneously with the same instrument or contemporaneously with another. Studies of water ice and gas in the distant Solar System will help us test our understanding of cometary interiors and coma evolution. The question of cometary activity in main-belt comets will be further explored with the possibility of a direct detection of coma gas. We explore the technical approaches to these science cases and provide simple tools for estimating comet dust and gas brightness. Finally, we consider the effects of the observatorys non-sidereal tracking limits, and provide a list of potential comet targets during the first 5 years of the mission.
The James Webb Space Telescope (JWST) provides the opportunity for ground-breaking observations of asteroids. It covers wavelength regions that are unavailable from the ground, and does so with unprecedented sensitivity. The main-belt and Trojan asteroids are all observable at some point in the JWST lifetime. We present an overview of the capabilities for JWST and how they apply to the asteroids as well as some short science cases that take advantage of these capabilities.
The James Webb Space Telescope (JWST), scheduled for launch in 2018, is the successor to the Hubble Space Telescope (HST) but with a significantly larger aperture (6.5 m) and advanced instrumentation focusing on infrared science (0.6-28.0 $mu$m ). In this paper we examine the potential for scientific investigation of Titan using JWST, primarily with three of the four instruments: NIRSpec, NIRCam and MIRI, noting that science with NIRISS will be complementary. Five core scientific themes are identified: (i) surface (ii) tropospheric clouds (iii) tropospheric gases (iv) stratospheric composition and (v) stratospheric hazes. We discuss each theme in depth, including the scientific purpose, capabilities and limitations of the instrument suite, and suggested observing schemes. We pay particular attention to saturation, which is a problem for all three instruments, but may be alleviated for NIRCam through use of selecting small sub-arrays of the detectors - sufficient to encompass Titan, but with significantly faster read-out times. We find that JWST has very significant potential for advancing Titan science, with a spectral resolution exceeding the Cassini instrument suite at near-infrared wavelengths, and a spatial resolution exceeding HST at the same wavelengths. In particular, JWST will be valuable for time-domain monitoring of Titan, given a five to ten year expected lifetime for the observatory, for example monitoring the seasonal appearance of clouds. JWST observations in the post-Cassini period will complement those of other large facilities such as HST, ALMA, SOFIA and next-generation ground-based telescopes (TMT, GMT, EELT).
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا